Greenhouse gas emission due to forest fires in three tree communities in Michoacán

Authors

DOI:

https://doi.org/10.19136/era.a12n1.4184

Keywords:

Fire behavior, estimation equations, combustion efficiency factor, combustion phases, burning of needles

Abstract

The forest fires consume large amounts of forest fuel and emit greenhouse gases into the atmosphere, mainly CO2 and CO. The objective of this work was to calculate the emission from burning of the litter layer, and to calculate the emissions considering all vegetation strata in the Mariposa Monarch Biosphere Reserve to Indicate If the arboreal community correspond or not to same fuelbeds. For this purpose, the litter layer in arboreal community the oyamel, pine-oyamel and pine-oak was burned. The CONSUME program was used to calculate emissions of all the strata. It was obtained that the litter layer with the lowest total emissions corresponded to fir with 46 g kg-1 compared to 647, and 437 g kg-1 recorded in pine-fir and pine-oak, respectively (p< 0.05). Emission prediction models were obtained for CO2, CO, CH4, NO2 and NOX, which explained 74% of the emissions generated from burning. With CONSUME, the oyamel community obtained higher emissions. The emission presented a correlation of 85% with consumption, with 43% higher consumption in low humidity fuels compared to high humidity fuels. Communities composed of pine did not show any variation in emissions, the high fuel load influences a high emission from a fire, so that a higher emission from a fire can be expected.

Downloads

Download data is not yet available.

References

Akagi SK, Burling IR, Mendoza A, Johnson TJ, Cameron M, Griffith DWT, Paton-Walsh C, Weise DR, Reardon J, Yokelson RJ (2014) Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system. Atmospheric Chemistry and Physics 14(1): 199-215. https://doi.org/10.5194/acp-14-199-2014

Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics 11(9): 4039-4072. https://doi.org/10.5194/acp-11-4039-2011

Bentley PD, Penman TD (2017) Is there an inherent conflict in managing fire for people and conservation? International Journals of Wildland Fire 26: 455-468. https://doi.org/10.1071/WF16150

Cascio WE (2018) Wildland fire smoke and human health. The Science of the Total Environment 624: 586. https://doi.org/10.1016/J.SCITOTENV.2017.12.086

Cofer WR, Levine JS, Winstead EL, Stocks BJ, Cahoon DR, Pinto JP (1993) Trace gas emissions from tropical biomass fires: Yucatan Peninsula, Mexico. Atmospheric Environment Part A General Topics 27(12): 1903-1907. https://doi.org/10.1016/0960-1686(93)90295-A

Corona-Núñez RO, Li F, Campo JE (2020) Fires Represent an Important Source of Carbon Emissions in Mexico. Global Biogeochem Cycles 34: e2020GB006815. https://doi.org/10.1029/2020GB006815

Drury SA, Larkin N (Sim), Strand TT, Huang S, Strenfel SJ, Banwell EM, O’Brien TE, Raffuse SM (2014) Intercomparison of fire size, fuel loading, fuel consumption, and smoke emissions estimates on the 2006 tripod fire, Washington, USA. Fire Ecology 10(1): 56-83. https://doi.org/10.4996/fireecology.1001056

Fernandes PM, Loureiro C (2013) Fine fuels consumption and CO2 emissions from surface fire experiments in maritime pine stands in northern Portugal. Forest Ecology and Management 291: 344-356. https://doi.org/10.1016/j.foreco.2012.11.037

Fernández-Alonso JM, Vega JA, Jiménez E, Ruiz-González AD, Álvarez-González JG (2017) Spatially modeling wildland fire severity in pine forests of Galicia, Spain. European Journal of Forest Research 136(1): 105-121. https://doi.org/10.1007/s10342-016-1012-5

Hao WM, Larkin NK (2014) Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United States. Forest Ecology and Management 317: 20-25. https://doi.org/10.1016/J.FORECO.2013.09.029

IPCC (2003) Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies. Kanagawa, Japan. 1170 p.

Kasischke ES, Hoy EE (2012) Controls on carbon consumption during Alaskan wildland fires. Global Changes Biology 18(1): 685-699. https://doi.org/10.1111/J.1365-2486.2011.02573.X

Kreye JK, Brewer NW, Morgan P, Varner JM, Smith AMS, Hoffman CM, Ottmar RD (2014) Fire behavior in masticated fuels: A review. Forest Ecology and Management 314: 193-207. https://doi.org/10.1016/j.foreco.2013.11.035

Miesel J, Reiner A, Ewell C, Maestrini B, Dickinson M (2018) Quantifying changes in total and pyrogenic carbon stocks across fire severity gradients using active wildfire incidents. Frontiers in Earth Science 6: 1. https://doi.org/10.3389/feart.2018.00041

Morfín-Ríos JE, Jardel-Peláez EJ, Alvarado-Celestino E, Michel-Fuentes JM (2012) Caracterización y cuantificación de combustibles forestales. Comisión Nacional Forestal-Universidad de Guadalajara. Guadalajara, Jalisco, México. 113p.

O’Brien JJ, Hiers JK, Varner JM, Hoffman CM, Dickinson MB, Michaletz ST, Loudermilk EL, Butler BW (2018) Advances in mechanistic approaches to quantifying biophysical fire effects. Current Forestry Reports 4: 161-177. https://doi.org/10.1007/S40725-018-0082-7/FIGURES/7

Ottmar RD (2014) Wildland fire emissions, carbon, and climate: Modeling fuel consumption. Forest Ecology and Management 317: 41-50. https://doi.org/10.1016/J.FORECO.2013.06.010

Ottmar RD, Sandberg DV, Riccardi CL, Prichard SJ (2007) An overview of the fuel characteristic classification system-quantifying, classifying, and creating fuelbeds for resource planning. Canadian Journal of Forest Research 2393(37): 2383-2393. https://doi.org/https://doi.org/10.1139/X07-07

Paton-Walsh C, Smith TEL, Young EL, Griffith DWT, Guérette A (2014) New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy - Part 1: Methods and Australian temperate forest fires. Atmospheric Chemistry and Physics 14(20): 11313-11333. https://doi.org/10.5194/ACP-14-11313-2014

Pokhrel RP, Gordon J, Fiddler MN, Bililign S (2021) Determination of emission factors of pollutants from biomass burning of african fuels in laboratory measurements. Journal of Geophysical Research: Atmospheres 126: e2021JD034731. https://doi.org/10.1029/2021JD034731

Prichard SJ, Kennedy MC, Wright CS, Cronan JB, Ottmar RD (2017) Predicting forest floor and woody fuel consumption from prescribed burns in southern and western pine ecosystems of the United States. Data Brief 15: 742-746. https://doi.org/10.1016/J.DIB.2017.10.029

Ramírez MI, Benet D, Pérez-Salicrup DR, Skutsch M, Venegas-Pérez Y (2019) Community participation for carbon measurement in forests of the Monarch Butterfly Biosphere Reserve, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 25(3): 333-352. https://doi.org/10.5154/R.RCHSCFA.2018.06.044

Rappold AG, Reyes J, Pouliot G, Cascio WE, Diaz-Sanchez D (2017) Community vulnerability to health impacts from wildland fire smoke exposure. Environmental Science & Technology 51(12): 6674. https://doi.org/10.1021/ACS.EST.6B06200

Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT (2016) Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives 124(9): 1334. https://doi.org/10.1289/EHP.1409277

Rodríguez Trejo DA, Pulido Luna JA, Martínez Muñoz P, Martínez Lara PJ, Monjarás Vega NA (2018) Análisis comparativo de quemas prescritas aplicadas a encinares tropicales. Agrociencia 52(6): 783-801

Rodríguez-Trejo DA, Martínez-Muñoz P, Pulido-Luna JA, Martínez-Lara PJ, Cruz-López JD (2020) Combustibles, comportamiento del fuego y emisiones en un pastizal y una sabana artificiales en Chiapas. Revista de Biología Tropical 68(2): 641-654. https://doi.org/10.15517/rbt.v68i2.33954

Rstudio Team (2020) RStudio: Integrated Development Environmental for R (Version 4.0.3.). RStudio, PBC, Boston, MA.

Ruiz-Corzo R, Aryal DR, Venegas-Sandoval A, Jerez-Ramírez DO, Fernández-Zúñiga KS, Lopez-Cruz S del C, López-Hernández JC, Peña-Álvarez B, Velázquez-Sanabria CA (2022) Dinámica temporal de combustibles forestales y efecto del incendio en Cerro Nambiyugua, Chiapas, México. Ecosistemas y Recursos Agropecuarios 9(2): e3253. https://doi.org/10.19136/era.a9n2.3253

Sikkink PG, Jain TB, Reardon J, Heinsch FA, Keane RE, Butler B, Baggett LC (2017) Effect of particle aging on chemical characteristics, smoldering, and fire behavior mixed-conifer masticated fuel. Forest Ecology and Management 405: 150-165. http://dx.doi.org/10.1016/j.foreco.2017.09.008

Russell-Smith J, Murphy BP, Meyer CP (Mick), Cook GD, Maier S, Edwards AC, Schatz J, Peter B (2009) Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications. International Journal of Wildland Fire 18(1): 1-18. https://doi.org/10.1071/WF08009

Urbanski S (2014) Wildland fire emissions, carbon, and climate: Emission factors. For Ecol Manage 317: 51-60. https://doi.org/10.1016/j.foreco.2013.05.045

Yokelson RJ, Burling IR, Gilman JB, Warneke C, Stockwell CE, De Gouw J, Akagi SK, Urbanski SP, Veres P, Roberts JM, Kuster WC, Reardon J, Griffith DWT, Johnson TJ, Hosseini S, Miller JW, Cocker III DR, Jung H, Weise DR (2013) Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmos Chem Phys 13(1): 89-116. https://doi.org/10.5194/acp-13-89-2013

Yokelson RJ, Burling IR, Urbanski SP, Atlas EL, Adachi K, Buseck PR, Wiedinmyer C, Akagi SK, Toohey DW, Wold CE (2011) Trace gas and particle emissions from open biomass burning in Mexico. Atmospheric Chemistry and Physics 11(14): 6787-6808. https://doi.org/10.5194/ACP-11-6787-2011

Yokelson RJ, Crounse JD, DeCarlo PF, Karl T, Urbanski S, Atlas E, Campos T, Shinozuka Y, Kapustin V, Clarke AD, Weinheimer A, Knapp DJ, Montzka DD, Holloway J, Weibring P, Flocke F, Zheng W, Toohey D, Wennberg PO, Wiedinmyer C, Mauldin L, Fried A, Richter D, Walega J, Jimenez JL, Adachi K, Buseck PR, Hall SR, Shetter R (2009) Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics 9(15): 5785-5812. https://doi.org/10.5194/ACP-9-5785-2009

Yokelson RJ, Urbanski SP, Atlas EL, Toohey DW, Alvarado EC, Crounse JD, Wennberg PO, Fisher ME, Wold CE, Campos TL, Adachi K, Buseck PR, Hao WM (2007) Emissions from forest fires near Mexico City. Atmospheric Chemistry and Physics 7(21): 5569-5584. https://doi.org/10.5194/acp-7-5569-2007

Downloads

Published

2025-03-25

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Ortiz-Mendoza, R., González-Tagle, M. A. ., Pérez-Salicrup, D. R., Aguirre-Calderón, O. A., Himmelsbach, W., & Cuéllar-Rodríguez, L. G. (2025). Greenhouse gas emission due to forest fires in three tree communities in Michoacán. Ecosistemas Y Recursos Agropecuarios, 12(1). https://doi.org/10.19136/era.a12n1.4184

Most read articles by the same author(s)