Nonlinear local height-diameter equations for five conifers in southwestern Puebla, Mexico

Authors

  • Juan Carlos Tamarit-Urias Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias image/svg+xml
    • Jonathan Hernández-Ramos Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias image/svg+xml
      • Vidal Guerra-De la Cruz Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias image/svg+xml
        • Enrique Buendía-Rodríguez Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias image/svg+xml
          • Casimiro Ordóñez-Prado Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias image/svg+xml

            DOI:

            https://doi.org/10.19136/era.a12n3.4610

            Keywords:

            grouping by species, random coefficients, mixed-effects model, taxon-specific parameters, dummy variables

            Abstract

            Tree height (h) is a relevant variable for predicting other tree or stand attributes such as volume, biomass or carbon content. However, unlike diameter at breast height (d), the measurement of total height is difficult and costly, so h – d equations are used to estimate it. The objective was to generate local height - diameter equations for five conifer species of timber importance in southwestern Puebla, Mexico. In a first phase, the predictive capacity of nine nonlinear biparametric models was evaluated, using the global database integrated in 2012 of the five species. Through a quantitative and graphic evaluation system, the modified Hossfeld I model was identified as the one with the best predictive capacity because it exhibited a biologically realistic behavior. In a second phase, the selected model was adjusted using three fitting strategies: (1) nonlinear least squares (NLS) per species, (2) NLS with the incorporation of dummy variables (NLS-DV) for the global database, and (3) mixed-effects models (MEM) for the full base and using the species covariate as a grouping factor. According to R2adj and RMSE statistics it was determined that NLS-DV and MEM were better than NLS, subsequently MEM was diagnosed to be superior than NLS-DV (AIC = 10 442.2, BIC = 10481.24 and logLik = -5 214.1). It is concluded that MEM random effects values are useful for estimating h with primary use in forest inventories.

            Downloads

            Download data is not yet available.

            Author Biographies

            • Juan Carlos Tamarit-Urias, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias

              NGENIERO FORESTAL CON ORIENTACIÓN EN INDUSTRIAS

              MAESTRO EN CIENCIAS EN CIENCIAS FORESTALES

              DOCTOR EN CIENCIAS FORESTALES

              INVESTIGADOR TITULAR "C" EN EL INIFAP

            • Jonathan Hernández-Ramos, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias

              Doctor en Ciencias Forestales.

            • Vidal Guerra-De la Cruz, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias

              Doctor en Ciencias Forestales.

            • Enrique Buendía-Rodríguez, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias

              Doctor en Ciencias Forestales.

            • Casimiro Ordóñez-Prado, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias

              Doctor en Ciencias Forestales.

            References

            Abedi R, Abedi T (2020) Some non-linear height-diameter models performance for mixed stand in forests in Northwest Iran. Journal of Mountain Science 17(5): 1084-1095. https://doi.org/10.1007/s11629-019-5870-4

            Bronisz K, Mehtätalo L (2020) Mixed-effects generalized height–diameter model for young silver birch stands on post-agricultural lands. Forest Ecology and Management 460: 117901. https://doi.org/10.1016/j.foreco.2020.117901

            Bui MH, Nguyen TBP, Dell B (2023) Allometric relationships among tree-size variables under tropical forest stages in Gia Lai, Vietnam. Ecological Questions 34(2): 1-25. https://doi.org/10.12775/EQ.2023.017

            Camacho EAR, Rivas SC, Hernández JAL, Durán ÁAC, Carmona JX, Nagel J (2022) Generalized height-diameter models with random effects for natural forests of central Mexico. CERNE, 28: e103033. https://doi.org/10.1590/01047760202228013033

            Chenge IB (2021) Height–diameter relationship of trees in Omo strict nature forest reserve, Nigeria. Trees, Forests and People 3: 100051. https://doi.org/10.1016/j.tfp.2020.100051

            Ciceu A, Garcia-Duro J, Seceleanu I, Badea O (2020) A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands. Forest Ecology and Management 477: 118507. https://doi.org/10.1016/j.foreco.2020.118507

            CONAFOR (2015) Estudio de cuenca de abasto región Izta Popo. Comisión Nacional Forestal. Guadalajara, Jal., México. 216p. http://www.conafor.gob.mx:8080/documentos/docs/22/7394Izta-Popo%202%20Puebla%20y%20Taxcala.pdf. Fecha de consulta 15 de abril de 2025.

            CONAFOR (2016) Estudio de cuenca de abasto forestal “Izta-Popo”. Guadalajara, Jal., México. 213 p. https://www.gob.mx/cms/uploads/attachment/file/254065/Estudio_de_cuenca_de_abasto_-_Izta-Popo_1_Estado_de_Mexico.pdf. Fecha de consulta 19 de mayo de 2025.

            Corral RS, Silva AMA, Quiñonez BG (2019) A generalized nonlinear height-diameter model with mixed-effects for seven pinus species in Durango, Mexico. Revista Mexicana de Ciencias Forestales 10(53): 86-117. https://doi.org/10.29298/rmcf.v10i53.500

            Crecente-Campo F, Corral-Rivas JJ, Vargas-Larreta B, Wehenkel C (2014) Can random components explain differences in the height–diameter relationship in mixed uneven-aged stands?. Annals of Forest Science 71: 51-70. https://doi.org/10.1007/s13595-013-0332-6

            Crecente-Campo F, Tomé M, Soares P, Diéguez-Aranda U (2010) A generalized nonlinear mixed-effects height–diameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management 259(5): 943-952. https://doi.org/10.1016/j.foreco.2009.11.036

            Cui K, Wu X, Zhang C, Zhao X, Von Gadow K (2022) Estimating height-diameter relations for structure groups in the natural forests of Northeastern China. Forest Ecology and Management 519: 120298. https://doi.org/10.1016/j.foreco.2022.120298

            Curtis RO (1967) Height-diameter and height-diameter-age equations for second-growth Douglas-fir. Forest Science 13(4): 365-375. https://doi.org/10.1093/forestscience/13.4.365

            Cysneiros VC, Pelissari AL, Gaui TD, Fiorentin LD, Carvalho DCD, Filho STB, Machado SDA (2020) Modeling of tree height–diameter relationships in the Atlantic Forest: effect of forest type on tree allometry. Canadian Journal of Forest Research 50(12): 1289-1298. https://doi.org/10.1139/cjfr-2020-0060

            Duan G, Gao Z, Wang Q, Fu L (2018) Comparison of different height–diameter modelling techniques for prediction of site productivity in natural uneven-aged pure stands. Forests 9(2): 63. https://doi.org/10.3390/f9020063

            Dutcă I, McRoberts RE, Næsset E, Blujdea VNB (2022) Accommodating heteroscedasticity in allometric biomass models. Forest Ecology and Management 505: 119865. https://doi.org/10.1016/j.foreco.2021.119865

            Ferraz-Filho AC, Mola-Yudego B, Ribeiro A, Scolforo JRS, Loos RA, Scolforo HF (2018) Height-diameter models for Eucalyptus sp. plantations in Brazil. CERNE 24: 9-17. https://doi.org/10.1590/01047760201824012466

            Fu L, Sun W, Wang G (2017) A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China. Trees 31: 557-573. https://doi.org/10.1007/s00468-016-1490-6

            Gollob C, Ritter T, Vospernik S, Wassermann C, Nothdurft A (2018) A flexible height–diameter model for tree height imputation on forest inventory sample plots using repeated measures from the past. Forests 9(6): 368. https://doi.org/10.3390/f9060368

            Gomes DG (2022) Should I use fixed effects or random effects when I have fewer than five levels of a grouping factor in a mixed-effects model?. PeerJ, 10: e12794. https://doi.org/10.7717/peerj.12794

            Han Y, Lei Z, Ciceu A, Zhou Y, Zhou F, Yu D (2021) Determining an accurate and cost-effective individual height-diameter model for Mongolian pine on sandy land. Forests 12(9): 1144. https://doi.org/10.3390/f12091144

            Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, Robinson BS, Hodgson DJ, Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6: e4794. https://doi.org/10.7717/peerj.4794

            Hobiger J, Laa U, Vospernik S (2025) Comparing traditional methods and modern statistical techniques for tree height prediction. Forests 16(2): 271. https://doi.org/10.3390/f16020271

            Hofiço NDSA, Costa EA, Fleig FD, Finger CAG, Hess AF (2020) Height-diameter relationships for Eucalyptus grandis Hill ex. Maiden in Mozambique: using mixed-effects modeling approach. CERNE 26(2): 183-192. https://doi.org/10.1590/01047760202026022677

            Hossfeld JW (1822) Mathematik für Forstmänner, Ökonomen und Cameralisten. Gotha, T4. Bd., S. 310

            Hox J, Moerbeek M, Van de Schoot R (2018) Multilevel analysis: Techniques and applications. 3rd Edition. Taylor & Francis Group. New York, USA. 364p. https://doi.org/10.4324/9781315650982

            Huang S, Titus SJ, Wiens DP (1992) Comparison of nonlinear height–diameter functions for major Alberta tree species. Canadian Journal of Forest Research 22(9): 1297-1304. https://doi.org/10.1139/x92-172

            Imani G, Boyemba F, Lewis S, Nabahungu NL, Calders K, Zapfack L, Riera B, Balegamire C, Cuni-Sanchez A (2017) Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa. PloS One 12(6): e0179653. https://doi.org/10.1371/journal.pone.0179653

            Ismail MJ, Poudel TR, Ali A, Dong L (2025) Incorporating stand parameters in nonlinear height-diameter mixed-effects model for uneven-aged Larix gmelinii forests. Frontiers in Forests and Global Change 7: 1491648. https://doi.org/10.3389/ffgc.2024.1491648

            Lam TY, Kershaw JJA, Hajar ZSN, Rahman KA, Weiskittel AR, Potts MD (2017) Evaluating and modelling genus and species variation in height-to-diameter relationships for Tropical Hill Forests in Peninsular Malaysia. Forestry: An International Journal of Forest Research 90(2): 268-278. https://doi.org/10.1093/forestry/cpw051

            Lebedev A, Kuzmichev V (2020) Verification of two-and three-parameter simple height-diameter models for birch in the European part of Russia. Journal of Forest Science 66(9): 375-382. https://doi.org/10.17221/76/2020-JFS

            Lin F, Xie L, Hao Y, Miao Z, Dong L (2022) Comparison of modeling approaches for the height–diameter relationship: an example with planted mongolian pine (Pinus sylvestris var. mongolica) trees in northeast China. Forests 13(8): 1168. https://doi.org/10.3390/f13081168

            MacPhee C, Kershaw JA, Weiskittel AR, Golding J, Lavigne MB (2018) Comparison of approaches for estimating individual tree height–diameter relationships in the Acadian forest region. Forestry: An International Journal of Forest Research 91(1): 132-146. https://doi.org/10.1093/forestry/cpx039

            Magalhães TM (2017) Site-specific height-diameter and stem volume equations for Lebombo-ironwood. Annals of Forest Research 60(2): 297-312. https://doi.org/10.15287/afr.2017.838

            Mehtätalo L, De-Miguel S, Gregoire TG (2015) Modeling height-diameter curves for prediction. Canadian Journal of Forest Research 45(7): 826-837. https://doi.org/10.1139/cjfr-2015-0054

            Mehtätalo L, Lappi J (2020). Biometry for forestry and environmental data: With examples in R. 1st Edition. Chapman and Hall/CRC. Boca Raton, FL, USA. 411p. https://doi.org/10.1201/9780429173462

            Meyer HA (1940) A Mathematical expression for height curves. Journal of Forestry 38: 415-420. https://www.jstor.org/stable/40082063?origin=crossref

            Michaelis L, Menten ML (1913) Die kinetik der invertinwirkung. Biochemical Journal, 49, 333-369. https://www.chem.uwec.edu/Chem352_Resources/pages/readings/media/Michaelis_&_Menton_1913.pdf. Fecha de consulta 21 de marzo de 2025.

            Montgomery DC, Runger GC (2018) Applied statistics and probability for engineers. 7th Edition. Wiley. Hoboken, NJ, USA. 479p.

            Näslund M (1936) Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens skogsförsöksanstalt 29: 1-169 https://pub.epsilon.slu.se/10159/1/medd_statens_skogsforskningsanst_029_01.pdf. Fecha de consulta 14 de marzo de 2025.

            Nigul K, Padari A, Kiviste A, Noe SM, Korjus H, Laarmann D, Frelich LE, Jõgiste K, Stanturf JA, Paluots T, Põldveer E, Kängsepp V, Jürgenson H, Metslaid M, Kangur A (2021) The possibility of using the Chapman–Richards and Näslund functions to model height–diameter relationships in hemiboreal old-growth forest in Estonia. Forests 12(2): 184. https://doi.org/10.3390/f12020184

            Ogana FN, Corral-Rivas S, Gorgoso-Varela JJ (2020) Nonlinear mixed-effect height-diameter model for Pinus pinaster Ait. and Pinus radiata D. Don. CERNE 26: 150-161. https://doi.org/10.1590/01047760202026012695

            Patrício MS, Dias CR, Nunes L (2022) Mixed-effects generalized height-diameter model: A tool for forestry management of young sweet chestnut stands. Forest Ecology and Management 514: 120209. https://doi.org/10.1016/j.foreco.2022.120209

            Paulo JA, Tomé J, Tomé M (2011) Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. Annals of Forest Science 68(2): 295-309. https://doi.org/10.1007/s13595-011-0041-y

            Pettersson H (1955) Barrskogens volymproduktion. Meddelande från Statens Skogsforskningsinstitut 45: 1-391. https://pub.epsilon.slu.se/9982/1/medd_statens_skogsforskningsinst_045_01_a.pdf. Fecha de consulta 24 de marzo de 2025.

            Puc-Kauil R, Nava-Nava A, Paredes-Díaz E, Ruiz-Aquino F, Gerónimo-Torres JDC, Ortiz J (2024) Funciones alométricas de altura total para pinos tropicales en Puebla, México. Ecosistemas y Recursos Agropecuarios 11(2): e4118. https://doi.org/10.19136/era.a11n2.4118

            R Core Team (2024) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/. Fecha de consulta: 28 de marzo de 2025

            R-Studio Team. (2024). RStudio: Integrated development for R. RStudio, Inc. Boston, MA USA. https://www.rstudio.com/ Fecha de consulta: 28 de marzo de 2025

            Rijal B, Weiskittel AR, Kershaw JA (2012) Development of regional height to diameter equations for 15 tree species in the North American Acadian Region. Forestry: An International Journal of Forest Research 85(3): 379-390. https://doi.org/10.1093/forestry/cps036

            Salas-Eljatib C, Corvalán P, Pino N, Donoso PJ, Soto DP (2019) Modelos de efectos mixtos de altura-diámetro para Drimys winteri en el sur (41-43 °S) de Chile. Bosque 40(1): 71-80. https://doi.org/10.4067/S0717-92002019000100071

            Schumacher FX (1939) New growth curve and its application to timber-yield studies. Journal of Forestry 37: 819-820. https://www.cabidigitallibrary.org/doi/full/10.5555/19390630002

            Seki M, Sakici OE (2022) Ecoregion-based height-diameter models for Crimean pine. Journal of Forest Research 27(1): 36-44. https://doi.org/10.1080/13416979.2021.1972511

            Sharma RP, Breidenbach J (2015) Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data. Forest Science and Technology 11(1): 44-53. https://doi.org/10.1080/21580103.2014.957354

            Song X, Li J, Zeng X (2024) Parameterization of height–diameter and crown radius–diameter relationships across the globe. Journal of Plant Ecology 17(2): rtae005. https://doi.org/10.1093/jpe/rtae005

            Temesgen H, Monleon VJ, Hann DW (2008) Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests. Canadian Journal of Forest Research 38(3): 553-565. https://doi.org/10.1139/x07-104

            Tewari VP, Singh B (2018) Total wood volume equations for Tectona grandis Linn F. stands in Gujarat, India. Journal of Forest and Environmental Science 34(4): 313-320. https://doi.org/10.7747/JFES.2018.34.4.313

            Uzoh F (2017) Height-diameter model for managed even-aged stands of ponderosa pine for the Western United States using hierarchical nonlinear mixed-effects model. Australian Journal of Basic and Applied Sciences 11(14): 69-87. https://doi.org/10.22587/ajbas.2017.11.14.10

            Vibrans AC, Moser P, Oliveira LZ, Maçaneiro JPD (2015) Height-diameter models for three subtropical forest types in southern Brazil. Ciência e Agrotecnologia 39(3): 205-215. https://doi.org/10.1590/S1413-70542015000300001

            West T, Strimbu B (2025). Diameter and height modeling for accurate prediction of tree size in a Douglas-fir rainforest. Forestry: An International Journal of Forest Research cpaf010. https://doi.org/10.1093/forestry/cpaf010

            Wykoff WR, Crookston NL, Stage AR (1982) User’s guide to the stand prognosis model. USDA Forest Service. Ogden, UT, USA. 113p. https://doi.org/10.2737/INT-GTR-133

            Xie L, Widagdo FRA, Miao Z, Dong L, Li F (2022) Evaluation of the mixed-effects model and quantile regression approaches for predicting tree height in larch (Larix olgensis) plantations in northeastern China. Canadian Journal of Forest Research 52(3): 309-319. https://doi.org/10.1139/cjfr-2021-0184

            Yang SI, Brandeis TJ, Helmer EH, Oatham MP, Heartsill-Scalley T, Marcano-Vega H (2022) Characterizing height-diameter relationships for Caribbean trees using mixed-effects random forest algorithm. Forest Ecology and Management 524: 120507. https://doi.org/10.1016/j.foreco.2022.120507

            Zang H, Lei X, Zeng W (2016) Height–diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models. Forestry: An International Journal of Forest Research 89(4): 434-445. https://doi.org/10.1093/forestry/cpw022

            Zhang Z, Wang T, Skidmore AK, Cao F, She G, Cao L (2023) An improved area-based approach for estimating plot-level tree DBH from airborne LiDAR data. Forest Ecosystems 10: 100089. https://doi.org/10.1016/j.fecs.2023.100089

            Downloads

            Published

            2025-10-21

            Issue

            Section

            SCIENTIFIC ARTICLE

            How to Cite

            TAMARIT URIAS, J. C., HERNÁNDEZ RAMOS, J., GUERRA DE LA CRUZ, V., BUENDÍA RODRÍGUEZ, E., & ORDÓÑEZ PRADO, C. (2025). Nonlinear local height-diameter equations for five conifers in southwestern Puebla, Mexico. Ecosistemas Y Recursos Agropecuarios, 12(3). https://doi.org/10.19136/era.a12n3.4610

            Most read articles by the same author(s)