Modelado del crecimiento durante la detoxificación de residuos de café por hongos filamentosos

Autores/as

  • Eva Luz Hernández-Teyssier Universidad Politécnica de Pachuca
  • Miguel Angel Anducho-Reyes Universidad Politécnica de Pachuca
  • Gerardo Díaz-Godínez Universidad Autónoma de Tlaxcala
  • Alejandro Tellez-Jurado Universidad Politécnica de Pachuca

DOI:

https://doi.org/10.19136/era.a10nNEIII.3628

Palabras clave:

Ecuación de Gompertz, Lentinus strigosus, método indirecto, polifenoles, Trichoderma harzianum

Resumen

Se describe el modelado del crecimiento y detoxificación de una  mezcla de residuos de café (MRC) por fermentación en estado sólido (FES) a partir de la cuantificación del CO2 metabólico como método indirecto, solución de ecuación de estequiometría de crecimiento y seguimiento de polifenoles. La FES se realizó en columnas Raimbault con Lentinus strigosus, Trichoderma harzianum y dos cepas de Aspergillus sp.; una aislada de paja de cebada (Aspergillus sp. APC) y otra de residuos de café (Aspergillus sp. ARC); el CO2 se atrapó en solución de NaOH 1.0 M. La solución de la ecuación dio el factor de conversión 3.53 g de CO2 por gramo de biomasa y por la ecuación modificada de Gompertz, el modelado de biomasas con valores de R2 superiores a 0.95; las μmax fueron 0.12 ± 0.01 h−1 para L. strigosus, 0.20 ± 0.03 h−1 para T. harzianum, 0.21 ± 0.01 h−1 para Aspergillus sp. APC y 0.42 ± 0.08 h−1 para Aspergillus sp. ARC, sin embargo, los valores de RMSE, indica predicciones con errores considerados. Finalmente, la detoxificación se logró en 75.74 ± 6.07% con L. strigosus a los 10 días, 56.13 ± 6.92% y 50.34 ± 4.82% con T. harzianum y Aspergillus sp. APC, respectivamente, a los 4 días y 32.89 ± 3.17% con Aspergillus sp. ARC a los 10 días. La estrategia de cuantificación y modelado de biomasas dota de una nueva herramienta para el estudio de FES, además se describe la detoxificación como consumo de polifenoles como sustrato. 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Ahmed MA, Choi JW (2021) Characteristic features of lignin extracted with gamma valerolactone after anaerobic and sonication only treatments of pine saw dust to make thin film composites. Bioresource Technology Reports 15: 100814. DOI: 10.1016/j.biteb.2021.100814.

Alves RC, Rodrigues F, Nunes MA, Vinha AF, Oliveira MBPP (2017) State of the art in coffee processing byproducts.

In: Galanakis CM (ed) Handbook of coffee processing by-products: Sustainable applications. Elsevier. London, UK. pp: 1-26.

Bhoite RN, Murthy PS (2014) Biodegradation of coffee pulp tannin by Penicillium verrucosum for production of tannase, statistical optimization and its application. Food and Bioproducts Processing 94: 727-735.

Brand D, Pandey A, Roussos S, Soccol CR (2000) Biological detoxification of coffee husk by filamentous fungi using a solid-state fermentation system. Enzyme and Microbial Technology 27: 127-133.

Chen M, Li Y, Liu H, Zhang D, Shi QS, Zhong XQ, Guo Y, Xie XB (2023) High value valorization of lignin as environmental benign antimicrobial. Materials Today Bio 18 DOI: 10.1016/j.mtbio.2022.100520.

De-Carvalho-Oliveira F, Srinivas K, Helms GL, Isern NG, Cort JR, Gonçalves AR, Ahring BK (2018) Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource Technology 257: 172-180.

De-Oliveira-Rodrigues P, Alves Gurgel LV, Pasquini D, Badotti F, Góes-Neto A, Alves Baffi M (2020) Lignocellulosedegrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renewable Energy 145: 2683-2693.

Doran P (2012) Bioprocess engineering principles. 2nd Edition. Academic Press. Sidney, Australia. 430p.

Dulay RMR, Arenas MC, Kalaw SP, Reyes RG, Cabrera EC (2014) Proximate composition and functionality of the culinary-medicinal tiger sawgill mushroom, Lentinus tigrinus (higher Basidiomycetes), from the Philippines. International Journal of Medicinal Mushrooms 16: 85-94.

Farah A, Dos-Santos TF (2015) The coffee plant and beans: An introduction. In: Preedy VR (ed) Coffee in health and disease prevention. Elsevier Inc. London, UK. pp: 5-10.

Gabhane J, Kumar S, Sarma AK (2020) Effect of glycerol thermal and hydrothermal pretreatments on lignin degradation and enzymatic hydrolysis in paddy straw. Renewable Energy 154: 1304-1313.

García-Esquivel Y, Mercado-Flores Y, Anducho-Reyes MA, Álvarez-Cervantes J, Wobeser EA von, Marina-Ramírez AI, Téllez-Jurado A (2021) 3-Methyl-2-benzothiazolinone hydrazone and 3-dimethylamino benzoic acid as substrates for the development of polyphenoloxidase and phenoloxidase activity by zymograms. 3 Biotech 11: 1-12. DOI: 10.1007/s13205-020-02622-6.

Geremu M, Tola YB, Sualeh A (2016) Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture 3: 25. 10.1186/s40538-016-0077-1.

Gómez A, KloseW, Rincón SL, WiestW (2004) Transformación termoquímica de la biomasa residual del proceso de extracción del aceite de palma: tecnologías y perspectivas. Palmas 25: 388-397.

Govindarajan RK, Krishnamurthy M, Neelamegam R, Shyu DJH, Muthukalingan K, Nagarajan K (2019) Purification, structural characterization and biotechnological potential of tannase enzyme produced by Enterobacter cloacae strain 41. Process Biochemistry 77: 37-47.

Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of samples for compositional analysis laboratory analytical procedure (LAP). National Renewable Energy Laboratory. Colorado, USA. https://www.nrel.gov/docs/gen/fy08/42620.pdf. Fecha de consulta: 3 de enero de 2022.

Hernández-Teyssier EL, Ramírez-Vargas MR, Ramírez-Castillo ML, Téllez-Jurado A (2023) Integration of extraction and acid hydrolysis processes as a strategy for better use and obtaining products from coffee residues. Revista Mexicana de Ingeniería Química 22(1): Bio3021. DOI: 10.24275/rmiq/Bio3021.

Hikichi SE, Andrade RP, Dias ES, Duarte WF (2017) Biotechnological applications of coffee processing byproducts. In: Galanakis CM (ed) Handbook of coffee processing by-products: Sustainable applications. Elsevier. Chania, Greece. pp: 221-244.

ICO (2021) The Future of Coffee: Investing in youth for a resilient and sustainable coffee sector. Germany. 98p.

ICO (2022) International Coffee Day 2022. International Coffee Organization. London, UK. 4 p. https://www.internationalcoffeeday.org. Fecha de consulta: 2 de diciembre de 2022.

Janissen B, Huynh T (2018) Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling 128: 110-117.

Jorge-Montalvo PA, Flores del Pino L, Visitación Figueroa L, Naveda Rengifo RA (2019) Remoción de lignina en el pretratamiento de cascarilla de arroz por explosión con vapor. Revista de La Sociedad Química Del Perú 85: 352-361.

Kasai D, Masai E, Katayama Y, Fukuda M (2007) Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase. FEMS Microbiology Letters 274: 323-328.

Lekshmi R, Arif Nisha S, Thirumalai Vasan P, Kaleeswaran B (2021) A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applications. Environmental Research 201: 111625. DOI:10.1016/j.envres.2021.111625.

Londoño-Hernandez L, Ruiz HA, Ramírez C, Ascacio JA, Rodríguez-Herrera R, Aguilar CN (2020) Fungal detoxification of coffee pulp by solid-state fermentation. Biocatalysis and Agricultural Biotechnology 23: 101467. DOI: 10.1016/j.bcab.2019.101467.

Lu F, Ralph J (2010) Lignin. In: Run-Cang S (ed) Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier. Beijing, China. pp: 169-207.

Manasa V, Padmanabhan A, Appaiah KAA (2020) Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Management 120: 762-771.

Massaya J, Prates Pereira A, Mills-Lamptey B, Benjamin J, Chuck CJ (2019) Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches. Food and Bioproducts Processing 118: 149-166.

Mata G, Salmones D, Pérez-Merlo R (2016) Hydrolytic enzyme activities in shiitake mushroom (Lentinula edodes) strains cultivated on coffee pulp. Revista Argentina de Microbiología 48: 191-195.

Montgomery D (2004) Diseño y Análisis de Experimentos. 2da Edición. Limusa Willey. CDMX, México. 692p.

Muñoz-González R, Mero-Loor AK (2020) El sector cafetalero a nivel mundial y sus principales determinantes socioeconómicos. Revista Cubana de Ciencias Económicas 6: 27-41.

Mussatto SI, Carneiro LM, Silva JPA, Roberto IC, Teixeira JA (2011) A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers 83: 368-374.

Otsuka Y, Nakamura M, Shigehara K, Sugimura K, Masai E, Ohara S, Katayama Y (2006) Efficient production of 2-pyrone 4,6-dicarboxylic acid as a novel polymer-based material from protocatechuate by microbial function. Applied Microbiology and Biotechnology 71: 608-614.

Pineda-Insuasti JA, Soto-Arroyave CP, Ramos-Sánchez LB (2014) Ecuación estequiométrica para describir el crecimiento de Pleurotus ostreatus cepa ceba-gliie-po-010606. Biotecnología Aplicada 31: 43-47.

Quintanar-Gómez S, Arana-Cuenca A, Mercado Flores Y, Gracida Rodríguez JN, Téllez-Jurado A (2012) Effect of particle size and aeration on the biological delignification of corn straw using Trametes sp. 44. BioResources 7: 327-344.

R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Viena, Austria. https://www.r-project.org/. Fecha de consulta: 2 de enero de 2023

Raimbault M, Alazard D (1980) Culture method to study fungal growth in solid fermentation. European Journal of Applied Microbiology and Biotechnology 9: 199-209.

Descargas

Publicado

2023-12-31

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Hernández-Teyssier, E. L., Anducho-Reyes, M. A., Díaz-Godínez, G., & Tellez-Jurado, A. (2023). Modelado del crecimiento durante la detoxificación de residuos de café por hongos filamentosos. Ecosistemas Y Recursos Agropecuarios, 10(NEIII). https://doi.org/10.19136/era.a10nNEIII.3628

Artículos similares

161-170 de 1216

También puede Iniciar una búsqueda de similitud avanzada para este artículo.