Aplicación de nanopartículas de óxido de zinc y cloruro de sodio en chile pimiento

Autores/as

  • Guadalupe Magdaleno-García Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP. 25315. Saltillo, Coahuila, México.
  • Antonio Juárez-Maldonado Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP. 25315. Saltillo, Coahuila, México
  • Rebeca Betancourt-Galindo Centro de Investigación en Química Aplicada (CIQA) México
  • Susana González-Morales Investigador por México CONACYT Departamento de Horticultura (UAAAN)
  • Miriam Sánchez-Vega Investigador por México CONACYT Departamento de Parasitología (UAAAN)
  • Marcelino Cabrera-De la Fuente Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP. 25315. Saltillo, Coahuila, México.
  • Alonso Méndez-López Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP. 25315. Saltillo, Coahuila, México

DOI:

https://doi.org/10.19136/era.a10nNEIII.3679

Palabras clave:

nanotecnología, esféricas, hexagonales, morfología, eustrés

Resumen

Las nanopartículas de óxido de zinc (NPs ZnO) han llamado la atención
debido a sus propiedades benéficas y a que pueden aplicarse en la agricultura como nanofertilizantes, nanoreguladores de crecimiento y para mejorar parámetros de calidad. El uso de euestresores como cloruro de sodio (NaCl) puede mejorar la
calidad de varios cultivos de hortalizas con especial interés en atributos de calidad del fruto. El objetivo de esta investigación fue evaluar los efectos del NaCl como
eustrés y NPs ZnO sobre el crecimiento y calidad de chile pimento. Se evaluaron 10 tratamientos: aplicación de NPs de morfología esférica y hexagonal en dosis de 50 y 100 mg L−1 con y sin aplicación de NaCl (50 mM), más testigo salino y testigo absoluto. Se evaluaron variables agronómicas: como altura de la planta (AP), diámetro del tallo (DT), peso seco de la raíz (PSR) y planta (PSP), peso de frutos por planta (PFP) y variables de calidad de fruto como: firmeza, pH, conductividad eléctrica (C.E), solidos solubles totales (SST), acidez titulable (AT), potencial óxido-reducción (ORP) y vitamina C. Los resultados muestran que los tratamientos con nanopartículas a 50 y 100 mg L−1 aumentaron los parámetros de AP, PSR, PSP y PFP, la morfología hexagonal mejoró AP, PSR y PSP, la combinación de NaCl
más NPs aumentaron el PSP y PFP, en parámetros de calidad de fruto el NaCl mejoró la firmeza y ORP, las NPs resultaron favorables para la calidad, aunque la forma esférica y hexagonal produjeron efectos similares.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Al-Selwey WA, Alsadon AA, Alenazi MM, Tarroum M, Ibrahim AA, Ahmad A, Seleiman MF (2023) Morphological and biochemical response of potatoes to exogenous application of ZnO and SiO2 nanoparticles in a water deficit environment. Horticulturae 9: 883. DOI: 10.3390/horticulturae9080883.

Boonchuay P, Cakmak I, Rerkasem B, Prom-U-Thai C (2013) Effect of different foliar zinc application at different growth stages on seed zinc concentration and its impact on seedling vigor in rice. Soil Science and Plant Nutrition 59: 180-188.

Cakmak I (2000) Tansley Review No. 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist 146: 185-205.

Cortés-Estrada CE, Gallardo-Velázquez T, Osorio-Revilla G, Castañeda-Pérez E, Meza-Márquez OG, López- Cortez M, Hernández-Martínez DM (2020) Prediction of total phenolics, ascorbic acid, antioxidant capacities, and total soluble solids of Capsicum annumu L. (bell pepper) juice by FT-MIR and multivariate analysis. Food Science and Technology 126: 109285. DOI: 10.1016/j.lwt.2020.109285.

Dimkpa CO, Singh U, Bindraban PS, Adisa IO, Elmer WH, Gardea-Torresdey JL, White JC (2019) Additionomission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size-specific response of soybean to micronutrients exposure. Science of the Total Environment 665: 606-616.

Esfandiari E, Abdoli M, Mousavi SB, Sadeghzadeh B (2016) Impact of foliar zinc application on agronomic traits and grain quality parameters of wheat grown in zinc deficient soil. Indian Journal of Plant Physiology 21: 263-270.

Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56: 678-686.

Flores-Velázquez J, Mendoza-Pérez C, Rubiños-Panta JE, Ruelas-Islas JDR (2022) Quality and Yield of Bell Pepper Cultivated with Two and Three Stems in a Modern Agriculture System. Horticulturae 8: 1187. DOI: 10.3390/horticulturae8121187.

Fratianni F, d’Acierno A, Cozzolino A, Spigno P, Riccardi R, Raimo F, Nazzaro F (2020) Biochemical characterization of traditional varieties of sweet pepper (Capsicum annuum L.) of the Campania region, Southern Italy. Antioxidants 9: 556. DOI: 10.3390/antiox9060556.

García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2017) Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Science of the Total Environment 589: 11-24.

García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, Zavala-García F (2019) Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8: 254. DOI: 10.3390/plants8080254.

Ghasemnezhad M, Sherafati M, Payvast GA (2011) Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. Journal of Functional Foods 3: 44-49.

Ghoname AA, Abou-Hussein SD, El-Tohamy WA (2019) Eustress (Positive stress) Salinity as an enhancement tool for bioactive ingredients and quality characteristics of vegetables. Middle East Journal of Applied Sciences 9: 456-463.

Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 807: 25-32.

González SC, Bolaina-Lorenzo E, Pérez-Trujillo JJ, Puente-Urbina BA, Rodríguez-Fernández O, Fonseca-García A, Betancourt-Galindo R (2021) Antibacterial and anticancer activity of ZnO with different morphologies: a comparative study. Biotech 11: 1-12. DOI: 10.1007/s13205-020-02611-9.

Gutiérrez-Miceli FA, Oliva-Llaven MÁ, Luján-Hidalgo MC, Velázquez-Gamboa MC, González-Mendoza D, Sánchez- Roque Y (2021) Zinc oxide phytonanoparticles’ effects on yield and mineral contents in fruits of tomato (Solanum lycopersicum L. cv. Cherry) under field conditions. The Scientific World Journal 2021: 1-11. DOI: 10.1155/2021/5561930.

Harris KD, Mathuma V (2015) Effect of foliar application of boron and zinc on growth and yield of tomato (Lycopersicon esculentum Mill.). Asian Journal of Pharmaceutical Science & Technology 5: 74-78.

Heikal YM, El-Esawi MA, El-Ballat EM, Abdel-Aziz HM (2023) Applications of nanoparticles for mitigating salinity and drought stress in plants: An overview on the physiological, biochemical and molecular genetic aspects. New Zealand Journal of Crop and Horticultural Science 51: 297-327.

Ingham B, Toney MF (2014) X-ray diffraction for characterizing metallic films. In: Barmak K, Coffey K (Eds) Metallic films for electronic, optical and magnetic applications. Woodhead Publishing. UK, pp: 3-38.

Jain R, Srivastava S, Solomon S, Shrivastava AK, Chandra A (2010) Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiologiae Plantarum 32: 979-986.

Juárez-Maldonado A, Ortega-Ortíz H, Pérez-Labrada F, Cadenas-Pliego G, Benavides-Mendoza A (2016) Cu nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. Journal of Applied Botany and Food Quality 89: 183-189.

Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nature nanotechnology 14: 532-540.

Kausar A, Hussain S, Javed T, Zafar S, Anwar S, Hussain S, Saqib M (2023) Zinc oxide nanoparticles as potential hallmarks for enhancing drought stress tolerance in wheat seedlings. Plant Physiology and Biochemistry 195: 341-350.

Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6: 2128-2135.

Kitayama M, Tisarum R, Theerawitaya C, Samphumphung T, Takagaki M, Kirdmanee C, Cha-um S (2019) Regulation on anthocyanins, α-tocopherol and calcium in two water spinach (Ipomoea aquatica) cultivars by NaCl salt elicitor. Scientia Horticulturae 249: 390-400.

Liu MZ, Zhang SY, Shen YH, Zhang ML (2004) Selenium nanoparticles prepared from reverse microemulsion process. Chinese Chemical Letters 15: 1249-1252.

Loizzo MR, Pugliese A, Bonesi M, Menichini F,Tundis R (2015) Evaluation of chemical profile and antioxidant activity of twenty cultivars from Capsicum annuum, Capsicum baccatum, Capsicum chacoense and Capsicum chinense: A comparison between fresh and processed peppers. Food Science and Technology 64: 623-631.

Lowry GV, Avellan A, Gilbertson LM (2019) Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature nanotechnology 14: 517-522.

Lucini L, Borgognone D, Rouphael Y, Cardarelli M, Bernardi J, Colla G (2016) Mild potassium chloride stress alters the mineral composition, hormone network, and phenolic profile in artichoke leaves. Frontiers in Plant Science 7: 948. DOI: 10.3389/fpls.2016.00948.

Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3: 30. DOI: 10.3390/horticulturae3020030.

Magdaleno GG, Juárez MA, Betancourt GR, Gonzales MS, Cabrera DFM, Sánchez VM, Méndez LA. (2023) Zinc oxide nanoparticle morphology modify germination and early growth of bell pepper seedlings: Zinc oxide nanoparticle morphology. Biotecnia 25: 5-15.

Moghaddam A, Larijani HR, Oveysi M, Moghaddam HRT, Nasri M (2023) Alleviating the adverse effects of salinity stress on Salicornia persica using sodium nitroprusside and potassium nitrate. Plant Biology 23: 166. DOI: 10.1186/s12870-023-04179-x.

Mousavi SR, Galavi M, Rezaei M (2013) Importance of zinc (Zn) for crop production: a review. International Journal of Agronomy and Plant Production 4: 64-68.

Munir T, Rizwan M, Kashif M, Shahzad A, Ali S, Amin N, Zahid R, Alam MFE, Imram M (2018) Effect of zinc oxide nanoparticles on the growth and zn uptake in wheat (Triticum aestivum l.) by seed priming method. Digest Journal of Nanomaterials & Biostructures 13: 315-323.

Nel AE, Mädler L, Velegol D, Xia T, Hoek E, Somasundaran P, Klaessing F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nature materials 8: 543-557.

Padayatt SJ, Daruwala R, Wang Y, Eck PK, Song J, Koh WS, Levine M (2001) Vitamin C: From molecular actionsto optimum intake. In: Packer L (ed) Handbook of antioxidants. (oxidative stress and disease). CRC, MarcelDekker, Inc. Taylor & Francis. New York. pp: 117-145.

Park JH, von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Advanced Materials 20: 1630-1635.

Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology 102: 186-196.

Pérez-Velasco EA, Betancourt Galindo R, Valdez Aguilar LA, González Fuentes JA, Puente Urbina BA, Lozano Morales S A, Sánchez Valdés S (2020) Effects of the morphology, surface modification and application methods of ZnO-NPs on the growth and biomass of tomato plants. Molecules 25: 1282. DOI: 10.3390/molecules25061282.

Pérez-Velasco EA, Valdez-Aguilar LA, Betancourt-Galindo R, Martínez-Juárez J, Lozano-Morales SA, González- Fuentes JA (2021) Gas exchange parameters, fruit yield, quality, and nutrient status in tomato are stimulated by ZnO nanoparticles of modified surface and morphology and their application form. Journal of Soil Science and Plant Nutrition 21: 991-1003.

Petropoulos SA, Levizou E, Ntatsi G, Fernandes Â, Petrotos K, Akoumianakis K, Barros L, Ferreira I (2017) Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chemistry 214: 129-136.

Rivera-Gutiérrez RG, Preciado-Rangel P, Fortis-Hernández M, Betancourt-Galindo R, Yescas-Coronado P, Orozco-Vidal JA (2021) Zinc oxide nanoparticles and their effect on melon yield and quality. Revista Mexicana de Ciencias Agrícolas 12: 791-803.

Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry 135: 160-166.

Rouphael Y, Kyriacou MC (2018) Enhancing quality of fresh vegetables through salinity eustress and biofortification applications facilitated by soilless cultivation. Frontiers in Plant Science 9: 1254. DOI: 10.3389/fpls.2018.01254.

Rouphael Y, Petropoulos SA, Cardarelli M, Colla G (2018) Salinity as eustressor for enhancing quality of vegetables. Scientia Horticulturae 234: 361-369.

Rout GR, Das P (2009) Effect of metal toxicity on plant growth and metabolism: I. Zinc. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer. Dordrecht. pp: 873-884

Rowland SD, Zumstein K, Nakayama H, Cheng Z, Flores AM, Chitwood DH, Maloof JN, Sinha NR (2020) Leaf shape is a predictor of fruit quality and cultivar performance in tomato. New Phytologist 226: 851-865.

Sbartai H, Djebar MR, Rouabhi R, Sbartai I, Berrebbah H (2011) Antioxidative response in tomato plants Lycopersicon esculentum L. roots and leaves to zinc. American-Eurasian Journal of Toxicological Sciences 3: 41-46.

Singh RP, Handa R, Manchanda G (2021) Nanoparticles in sustainable agriculture: An emerging opportunity. Journal of Controlled Release 329: 1234-1248.

Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry 83: 57-64.

Tiamiyu QO, Adebayo SE, Ibrahim N (2023) Recent advances on postharvest technologies of bell pepper: A review. Heliyon 9: 15302. DOI: 10.1016/j.heliyon.2023.e15302.

Tirani MM, Haghjou MM, Ismaili A (2019) Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Functional Plant Biology 46: 360-375.

Tomasi N, Pinton R, Dalla Costa L, Cortella G, Terzano R, Mimmo T, Scampicchio M, Cesco S (2015) New ‘solutions’ for floating cultivation system of ready-to-eat salad: A review. Trends in Food Science & Technology 46: 267-276.

Ullah A, Abbasi NA, Shafique M, Qureshi AA (2017) Influence of edible coatings on biochemical fruit quality and storage life of bell pepper cv. “Yolo Wonder”. Journal of Food Quality 2017: 1-11. DOI: 10.1155/2017/2142409.

Uresti-Porras JG, Cabrera-De-La Fuente M, Benavides-Mendoza A, Olivares-Sáenz E, Cabrera RI, Juárez-Maldonado A (2021) Effect of graft and nano ZnO on nutraceutical and mineral content in bell pepper. Plants 10: 2793. DOI: 10.3390/plants10122793.

Van-Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Current Opinion in Biotechnology 33: 206-219.

Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters 12: 4271-4275.

Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist 217: 523-539.

Yogaratnam N, Greenham DWP (1982) The application of foliar sprays containing nitrogen, magnesium, zinc and boron to apple trees. I. Effects on fruit set and cropping. Journal of Horticultural Science 57: 151-158.

Pejam F, Ardebili ZO, Ladan-Moghadam A, Danaee E (2021) Zinc oxide nanoparticles mediated substantial physiological and molecular changes in tomato. Plos One 163: 0248778. DOI: 10.1371/journal.pone.0248778.

Zhao J, Stenzel MH (2018) Entry of nanoparticles into cells: The importance of nanoparticle properties. Polymer Chemistry 9: 259-272.

Descargas

Publicado

2024-01-11

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Magdaleno-García, G., Juárez-Maldonado, A., Betancourt-Galindo, R., González-Morales , S., Sánchez-Vega, M., Cabrera-De la Fuente, M., & Méndez-López, A. (2024). Aplicación de nanopartículas de óxido de zinc y cloruro de sodio en chile pimiento. Ecosistemas Y Recursos Agropecuarios, 10(NEIII). https://doi.org/10.19136/era.a10nNEIII.3679

Artículos similares

1-10 de 14

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a