Efecto del extracto de Syzygium aromaticum L. sobre la fermentación y degradabilidad ruminal in vitro

Autores/as

DOI:

https://doi.org/10.19136/era.a12n1.4069

Palabras clave:

clavo de olor, compuestos bioactivos, extractos vegetales, fermentación in vitro, cordero

Resumen

Se evaluó el efecto de dosis crecientes (0, 0.6, 1.2 y 1.8 mL g-1 MS) de extracto de Syzygium aromaticum sobre la fermentación y degradabilidad ruminal in vitro, utilizando como sustrato una dieta para corderos en crecimiento. Se determinó la composición química de la dieta y los compuestos del extracto de S. aromaticum. Se utilizó el líquido ruminal de cuatro corderos Pelibuey en etapa de crecimiento (21 ± 0.3 kg de peso vivo) para realizar la prueba de fermentación ruminal in vitro (FRIV), producción de gas total (PGT) y degradabilidad ruminal in vitro (DRIV). La adición de dosis crecientes de extracto de S. aromaticum en la dieta generó un efecto cuadrático positivo (p < 0.05) en la fase de retraso antes de iniciar la PGT y la tasa de PGT; mientras que, en la asíntota de PGT, la PGT acumulada, la degradabilidad de la materia seca (DMS), los ácidos grasos de cadena corta (AGCC) y la energía metabolizable (EM) el efecto cuadrático fue negativo. En una segunda prueba de degradabilidad donde solo se evaluó la dosis de 0.6 mL g-1 MS, el extracto no influyó (p > 0.05) en la DMS a las 6, 18 y 48 h de fermentación, y aunque a las 24 h disminuyó (p < 0.05) 8.9%, a las 12 y 72 h incrementó (p < 0.05) hasta 3.0 y 5.9%, respectivamente. En conclusión, el extracto de S. aromaticum a una dosis de 0.6 mL g-1 MS modifica favorablemente la fermentación y degradabilidad ruminal in vitro.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Marco Antonio Rivas-Jacobo, Universidad Autónoma de San Luis Potosí

    Coordinador del Programa Educativo de Ingeniero Agrónomo Zootecnista y profesor investigador. Facultad de Agrónomia y Veterinaria de la UASLP

Referencias

Ahmed VU, Perveen S, Bano S (1990) Saponin from the leaves of Guaiacum officinale. Phytochemistry 29(10): 3287-3290. https://doi.org/10.1016/0031-9422(90)80201-Q

Akanmu AM, Hassen A, Adejoro FA (2020) Haematology and serum biochemical indices of lambs supplemented with Moringa oleifera, Jatropha curcas and Aloe vera leaf extract as anti-methanogenic additives. Antibiotics 9(9): 601. https://doi.org/10.3390/antibiotics9090601

AOAC (1990) Official methods of analysis. 15th edition. Association of Official Analytical Chemists. Arlington, USA. 672p.

Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S (2012) Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Sciencie and Technology 176(1-4): 78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010

Calabrò S (2015) Plant secondary metabolites. In: Puniya A, Singh R, Kamra D (eds) Rumen microbiology: From evolution to revolution. Springer. New Delhi, India. pp. 153-159. https://doi.org/10.1007/978-81-322-2401-3_11

Cardozo PW, Calsamiglia S, Ferret A, Kamel C (2005) Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. Journal of Animal Science 83(11): 2572-2579. https://doi.org/10.2527/2005.83112572x

Cedillo J, Vázquez-Armijo JF, González-Reyna A, Salem AZM, Kholif AE, Hernández-Meléndez J, Martínez-González JC, Montes de Oca JR, Rivero N, López D (2014) Effects of different doses of Salix babylonica extract on growth performance and diet in vitro gas production in Pelibuey growing lambs. Italian Journal of Animal Science 13(3): 3165. https://doi.org/10.4081/ijas.2014.3165

Cobellis G, Trabalza-Marinucci M, Marcotullio MC, Yu Z (2016) Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Animal Feed Science and Technology 215: 25-36. https://doi.org/10.1016/j.anifeedsci.2016.02.008

Cowan MM (1999) Plant products as antimicrobial agents. Clinical Microbiology Reviews 12: 564-582. https://doi.org/10.1128/cmr.12.4.564

Demirtaş A, Öztürk H, Pişkin I (2018) Overview of plant extracts and plant secondary metabolites as alternatives to antibiotics for modification of ruminal fermentation. Ankara Üniversitesi Veteriner Fakültesi Dergisi 65(2): 213-217.

Dong JN, Li SZ, Chen X, Qin GX, Wang T, Sun Z, Wu D, Zhao W, Demalash N, Zhang XF, Zhen YG (2021) Effects of different combinations of sugar and starch concentrations on ruminal fermentation and bacterial-community composition in vitro. Frontiers in Nutrition 8: 727714. https://doi.org/10.3389/fnut.2021.727714

Ebeid HM, Mengwei L, Kholif AE, Hassan FU, Lijuan P, Xin L, Chengjian Y (2020) Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. Current Microbiology 77: 1271-1282. https://doi.org/10.1007/s00284-020-01935-2

El-Essawy AM, Anele UY, Abdel-Wahed AM, Abdou AR, Khattab IM (2021) Effects of anise, clove and thyme essential oils supplementation on rumen fermentation, blood metabolites, milk yield and milk composition in lactating goats. Animal Feed Science and Technology 271: 114760. https://doi.org/10.1016/j.anifeedsci.2020.114760

Elghandour MMM, Acosta-Lozano N, Díaz AT, Castillo-Lopez E, Cipriano-Salazar M, Barros-Rodríguez M, Inyang UA, Purba AR, Salem AZM (2023) Influence of Azadirachta indica and Cnidoscolus angustidens aqueous extract on cattle ruminal gas production and degradability in vitro. Frontiers in Veterinary Science 10: 1090729. https://doi.org/10.3389/fvets.2023.1090729

Faniyi TO, Prates ÊR, Adegbeye MJ, Adewumi MK, Elghandour MMM, Salem AZM, Ritt L, Zubieta AS, Stella Laion, Ticiani E, Jack AA (2019) Prediction of biogas and pressure from rumen fermentation using plant extracts to enhance biodigestibility and mitigate biogases. Environmental Science and Pollution Research 26: 27043-27051. https://doi.org/10.1007/s11356-019-05585-1

France J, Dijkstra J, Dhanoa MS, López S, Bannink A (2000) Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro derivation of models and other mathematical considerations. British Journal of Nutrition 83: 143-150. https://doi.org/10.1017/S0007114500000180

Getachew G, Makkar HPS, Becker K (2002) Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science 139(3): 341-352. https://doi.org/10.1017/S0021859602002393.

Godde CM, Mason-D’Croz D, Mayberry DE, Thornton PK, Herrero M (2021) Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Security 28: 100488. https://doi.org/10.1016/j.gfs.2020.100488

Goel G, Makkar HPS, Becker K (2008) Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin‐rich fractions from different plant materials. Journal of Applied Microbiology 105(3): 770-777. https://doi.org/10.1111/j.1365-2672.2008.03818.x

Hassan FU, Arshad MA, Ebeid HM, Rehman MSU, Khan MS, Shahid S, Yang C (2020) Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet–microbe interaction. Frontiers in Veterinary Science 7: 575801. https://doi.org/10.3389/fvets.2020.575801

Hernández RPE, Mellado M, Adegbeye MJ, Salem AZM, Ponce CJL, Elghandour MMM, Omotoso OB (2022) Effects of long-term supplementation of Caesalpinia coriaria fruit extract on ruminal methane, carbon monoxide, and hydrogen sulfide production in sheep. Biomass Conversion and Biorefinery 1-14. https://doi.org/10.1007/s13399-022-03260-z

Kholif AE, Elazab MA, Matloup OH, Olafadehan OA, Sallam SMA (2021) Crude coriander oil in the diet of lactating goats enhanced lactational performance, ruminal fermentation, apparent nutrient digestibility, and blood chemistry. Small Ruminant Research 204: 106522. https://doi.org/10.1016/j.smallrumres.2021.106522

Kholif AE, Gouda GA, Fahmy M, Morsy TA, Abdelsattar MM, Vargas‐Bello‐Pérez E (2024) Fennel seeds dietary inclusion as a sustainable approach to reduce methane production and improve nutrient utilization and ruminal fermentation. Animal Science Journal 95(1): e13910. https://doi.org/10.1111/asj.13910

Kholif AE, Olafadehan OA (2021) Essential oils and phytogenic feed additives in ruminant diet: Chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochemistry Reviews 20(6): 1087-1108. https://doi.org/10.1007/s11101-021-09739-3

Kim H, Jung E, Lee HG, Kim B, Cho S, Lee S, Kwon I, Seo J (2019) Essential oil mixture on rumen fermentation and microbial community-an in vitro study. Asian-Australasian. Journal of Animal Sciences 32(6): 808. https://doi.org/10.5713/ajas.18.0652

Koike S, Yabuki H, Kobayashi Y (2014) Interaction of rumen bacteria as assumed by colonization patterns on untreated and alkali‐treated rice straw. Animal Science Journal 85(5): 524-531. https://doi.org/10.1111/asj.12176

Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J., Gómez BCA, Aguilar PCF, Solorio-Sánchez FJ (2020) Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science 7: 584. https://doi.org/10.3389/fvets.2020.00584

Makkar HPS, Sen S, Blümmel M, Becker K (1998) Effects of fractions containing saponins from Yucca schidigera, Quillaja saponaria and Acacia auriculoformis on rumen fermentation. Journal of Agricultural and Food Chemistry 46 (10): 4324-4328. https://doi.org/10.1021/jf980269q

Marques RDS, Cooke RF (2021) Effects of ionophores on ruminal function of beef cattle. Animals 11(10): 2871. https://doi.org/10.3390/ani11102871

Mauricio RM, Mould FL, Dhanoa MS, Owen E, Channa KS, Theodorou MK (1999) Semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Animal Feed Science and Technology 79(4): 321-330. https://doi.org/10.1016/S0377-8401(99)00033-4

Menke KH, Steingass H (1988) Estimation of the energetic feed value obtained from chemical an analysis and in vitro gas production using rumen fluid. Animal Research and Development 28: 7-55.

Mikulová K, Petrič D, Komáromyová M, Batťányi D, Kozłowska M, Cieslak A, Ślusarczyk S, Várady M, Váradyová Z (2023) Growth performance and ruminal fermentation in lambs with endoparasites and in vitro effect of medicinal plants. Agriculture 13(9): 1826. http://dx.doi.org/10.3390/agriculture13091826

Morsy TA, Gouda GA, Kholif AE (2022) In vitro fermentation and production of methane and carbon dioxide from rations containing Moringa oleifera leave silage as a replacement of soybean meal: in vitro assessment. Environmental Science and Pollution Research 29(46): 69743-69752. https://doi.org/10.1007/s11356-022-20622-2

NRC (2007) Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. National Academy Press, Washington DC, USA. 347p.

Patra A, Park T, Kim M, Yu Z (2017) Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology 8: 13. https://doi.org/10.1186/s40104-017-0145-9

Pedraza-Hernández J, Elghandour MMM, Khusro A, Camacho-Diaz LM, Vallejo LH, Barbabosa-Pliego A, Salem AZ (2019) Mitigation of ruminal biogases production from goats using Moringa oleifera extract and live yeast culture for a cleaner agriculture environment. Journal of Cleaner Production 234: 779-786. https://doi.org/10.1016/j.jclepro.2019.06.126

Ramadan MF (2022) Introduction to clove: Chemistry, functionality and techno-applications. In: Ramadan MF (ed) Clove (Syzygium aromaticum): Chemistry, functionality and applications. Academic Press. Cambridge, USA. pp. 1-8. https://doi.org/10.1016/B978-0-323-85177-0.00003-3

Ramos-Morales E, Arco-Pérez A, Martín-García AI, Yáñez-Ruiz DR, Frutos P, Hervás G (2014) Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Animal Feed Science and Technology 198:57-66. https://doi.org/10.1016/j.anifeedsci.2014.09.016

Righi F, Simoni M, Foskolos A, Beretti V, Sabbioni A, Quarantelli A (2017) In vitro ruminal dry matter and neutral detergent fibre digestibility of common feedstuffs as affected by the addition of essential oils and their active compounds. Journal of Animal and Feed Science 26(3): 204-212. https://doi.org/10.22358/jafs/76754/2017

Rossi CAS, Grossi S, Dell’Anno M, Compiani R, Rossi L (2022) Effect of a blend of essential oils, bioflavonoids and tannins on in vitro methane production and in vivo production efficiency in dairy cows. Animals 12(6): 728. http://dx.doi.org/10.3390/ani12060728

Saeed M, Khan MS, Alagawany M, Farag MR, Alqaisi O, Aqib AI, Kuma Ramadan, Qumar MMF (2021) Clove (Syzygium aromaticum) and its phytochemicals in ruminant feed: An updated review. Rendiconti lincei. Scienze Fisiche e Naturali 32: 273-285. https://doi.org/10.1007/s12210-021-00985-3

Salem AZM, Ryena AG, Elghandour MM, Camacho LM, Kholif AE, Salazar MC, Domínguez IA, Jiménez RM, Almaraz EM, Martínez AGL, Mariezcurrena MA (2014) Influence of Salix babylonica extract in combination or not with increasing levels of minerals mixture on in vitro rumen gas production kinetics of a total mixed ration. Italian Journal of Animal Science 13(4): 3110. https://doi.org/10.4081/ijas.2014.3110

Salem AZM (2012) Oral administration of leaf extracts to rumen liquid donor lambs modifies in vitro gas production of other tree leaves. Animal Feed Science and Technology 176(1-4): 94-101. https://doi.org/10.1016/j.anifeedsci.2012.07.011

SAS (2004) Institute Inc. SAS/STAT 9.1 User’s Guide. Cary, NC, USA: SAS Institute Inc. 5131p.

Shaaban MM, Kholif AE, Abd El Tawab AM, Radwan MA, Hadhoud FI, Khattab MSA, Saleh HM, Anele UY (2021) Thyme and celery as potential alternatives to ionophores use in livestock production: Their effects on feed utilization, growth performance and meat quality of Barki lambs. Small Ruminant Research 200: 106400. https://doi.org/10.1016/j.smallrumres.2021.106400

Sucu E (2023) In vitro studies on rumen fermentation and methanogenesis of different microalgae and their effects on acidosis in dairy cows. Fermentation 9(3): 229. https://doi.org/10.3390/fermentation9030229

Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48(3-4): 185-197. https://doi.org/10.1016/0377-8401(94)90171-6

Tomas A, Maroyi A, Cheikhyoussef N, Hussein AA, Cheikhyoussef A (2022) Health-promoting activities of clove (Syzygium aromaticum) extracts. In: Ramadan MF (ed) Clove (Syzygium aromaticum): Chemistry, functionality and applications. Academic Press. Cambridge, USA. pp. 619-637. https://doi.org/10.1016/B978-0-323-85177-0.00018-5

Ulanowska M, Olas B (2021) Biological Properties and prospects for the application of eugenol-A review. International Journal of Molecular Sciences 22(7): 3671. https://doi.org/10.3390/ijms22073671

Van-Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10): 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Zhang J, Xu X, Cao Z, Wang Y, Yang H, Azarfar A, Li S (2019) Effect of different tannin sources on nutrient intake, digestibility, performance, nitrogen utilization, and blood parameters in dairy cows. Animals 9(8): 507. https://doi.org/10.3390/ani9080507

Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, Zhang L, Wei S (2020) Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. Journal of Dairy Science 103(3): 2303-2314. https://doi.org/10.3168/jds.2019-16611

Descargas

Publicado

2025-03-25

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Limas-Martínez, A. G., Alvarado-Ramírez, E. R., López-Aguirre, D., Mendoza-Pedroza, S. I., Chávez-Soto, D. Y., & Rivas-Jacobo, M. A. (2025). Efecto del extracto de Syzygium aromaticum L. sobre la fermentación y degradabilidad ruminal in vitro. Ecosistemas Y Recursos Agropecuarios, 12(1). https://doi.org/10.19136/era.a12n1.4069

Artículos más leídos del mismo autor/a

1 2 > >>