Efecto de la salinidad en poblaciones de chile silvestre del Noroeste de México

Salinidad y diferenciación fenotípica en poblaciones de chile silvestre

Autores/as

  • José Manuel Osuna Rodríguez Universidad Autónoma de Sinaloa. Facultad de Agronomía. Km 17.5 Carretera Culiacán-El dorado s/n, C.P. (80000). Culiacán Rosales, Sinaloa, México. https://orcid.org/0000-0002-6586-6484
  • Sergio Hernández Verdugo Universidad Autónoma de Sinaloa. Facultad de Agronomía. Km 17.5 Carretera Culiacán-El dorado s/n, C.P. (80000). Culiacán Rosales, Sinaloa, México. https://orcid.org/0009-0003-6406-8434
  • Antonio Pacheco Olvera Universidad Autónoma de Sinaloa. Facultad de Agronomía. Km 17.5 Carretera Culiacán-El dorado s/n, C.P. (80000). Culiacán Rosales, Sinaloa, México. https://orcid.org/0000-0002-9595-2383
  • Tomás Osuna Enciso Universidad Autónoma de Sinaloa. Facultad de Agronomía. Km 17.5 Carretera Culiacán-El dorado s/n, C.P. (80000). Culiacán Rosales, Sinaloa, México. https://orcid.org/0009-0008-9108-2991
  • Saúl Parra Terraza Universidad Autónoma de Sinaloa. Facultad de Agronomía. Km 17.5 Carretera Culiacán-El dorado s/n, C.P. (80000). Culiacán Rosales, Sinaloa, México. https://orcid.org/0000-0001-5163-4677
  • César Enrique Romero Higareda Universidad Autónoma de Sinaloa. Facultad de Biología. Ciudad universitaria, calzada de las Américas y calle Universitarios s/n, C.P. (80013). Culiacán Rosales, Sinaloa, México. https://orcid.org/0000-0002-2794-7363

DOI:

https://doi.org/10.19136/era.a11n3.4092

Palabras clave:

Análisis de varianza anidado, Capsicum annuum L. var. glabriusculum, Estrés, NaCl

Resumen

La salinidad es un problema en zonas agrícolas al comprometer el crecimiento de los cultivos. Las variedades modernas de chile se adaptan poco a esta condición; por lo que la búsqueda de variabilidad en plantas de chile silvestre ayudaría para crear variedades mejoradas. El objetivo fue determinar los efectos de la salinidad y la distribución de la variación fenotípica entre poblaciones, entre y dentro de familias, y estimar la proporción de esta variación fenotípica que tiene una base genética. Se probaron tres tratamientos (0, 25 y 50 mM NaCl) en seis poblaciones de chile silvestre del Noroeste de México. Se observaron diferencias significativas entre tratamientos para todos los caracteres. La salinidad redujo todos los rasgos con excepción de grosor de hoja; fue mayor con 50 mM, siendo la materia seca de raíz (45.2%), hojas (38.7%), área foliar (37.6%), biomasa total (33.7%) los rasgos más sensibles. La mayor variación fenotípica se distribuyó dentro de familias. El mayor coeficiente de variación fue en peso seco de raíz (40%). Las poblaciones mantuvieron variación en todos los rasgos excepto en altura de planta; Presa Oviachic fue superior en peso seco de planta, raíz, tallo y hojas, área foliar, número de hojas y diámetro de tallo; Mazocahui en grosor de hoja; Lo de Vega y Yecorato en lecturas SPAD. Los niveles de NaCl influyeron en la expresión fenotípica de los rasgos estudiados. La variabilidad detectada en las poblaciones resulta promisoria para iniciar un proceso de domesticación en chile silvestre. 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ (2017) Plant responses to salt stress: Adaptive mechanisms. Agronomy 7: 18. https://doi.org/10.20944/preprints201702.0083.v2

Aktas H, Abak K, Cakmak I (2006) Genotypic variation in the response of pepper to salinity. Scientia Horticulturae 110(3): 260-266. https://doi.org/10.1016/j.scienta.2006.07.017

Alcalá-Rico JSGJ, Ramírez-Meraz M, Maldonado-Moreno N, Borja-Bravo M, Camposeco-Montejo N, López-Benítez A (2023) Variación morfológica en frutos de genotipos de chile piquín (Capsicum annuum var. Glabriusculum) del Noreste y Centro de México. Ecosistemas y Recursos Agropecuarios 10(2). https://doi.org/10.19136/era.a10n2.3482

Baeza K, Lopez-Hoffman L, Glenn EP, Flessa K, Garcia-Hernandez J (2013) Salinity limits of vegetation in Cienega de Santa Clara, an oligotrophic marsh in the delta of the Colorado River, Mexico: implications for an increase in salinity. Ecological Engineering 59: 157-166. https://doi.org/10.1016/j.ecoleng.2012.08.019

Barboza GE, García CC, Bianchetti LB, Romero MV, Scaldaferro M (2022) Monograph of wild and cultivated chili peppers (Capsicum L., Solanaceae). PhytoKeys 200: 1-423. https://doi.org/10.3897%2Fphytokeys.200.71667

Bojórquez-Quintal E, Ruiz-Lau N, Velarde-Buendía A, Echevarría-Machado I, Pottosin I, Martínez-Estévez M (2016) Natural variation in primary root growth and K+ retention in roots of habanero pepper (Capsicum chinense) under salt stress. Functional Plant Biology 43(12): 1114-1125. https://doi.org/10.1071/FP15391

Chetelat RT, Pertuzé RA, Faúndez L, Graham EB, Jones CM (2009) Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of northern Chile. Euphytica 167: 77–93. https://doi.org/10.1007/s10681-008-9863-6

Delgado AMDM, Miralles IHR, Masaguer RA, Martín SJV (2016). Estudio de turbas y residuos avícolas procedentes de pollo de engorde como componente de sustratos de cultivo. Revista Iinternacional de Contaminación Ambiental 32(4): 455-462. https://doi.org/10.20937/RICA.2016.32.04.09.

Di-Baccio D, Lorenzi A, Scartazza A, Rosellini I, Franchi E, Barbafieri M (2024) Morphophysiological characterisation of guayule (Parthenium argentatum A. Gray) in response to increasing NaCl concentrations: Phytomanagement and phytodesalinisation in arid and semiarid areas. Plants 13(3): 378. https://doi.org/10.3390/plants13030378

Efisue AA, Igoma EE (2019) Screening rice (O. sativa L.) in salinity gradient to identify performance during vegetative stage for salinity stressed environments. Journal of Plant Sciences 7: 144-150. https://doi.org/10.11648/j.jps.20190706.13

Efisue AA, Dike CC (2020) Screening rice (Oryza sativa L.) for salinity tolerance for yield and yield components in saline stressed environment. American Journal of Agriculture and Forestry 8(1): 15-21. https://doi.org/10.11648/j.ajaf.20200801.13

Etchevers-Barra JD, Cruz-Gaistardo O, Gallardo JF (2023) La degradación del suelo y el futuro de la humanidad. MIX TEC 4(6): 29-39.

Fang S, Hou X, Liang X (2021) Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science 12: 667458. https://doi.org/10.3389/fpls.2021.667458

Félix-Lizárraga JU, Ruiz-Torres NA, Rincón-Sánchez F, Sánchez-Ramírez FJ, Borrego-Escalante F, Benavides MA (2023) Selección de poblaciones de maíz con base en la producción temprana de biomasa bajo condiciones de estrés salino. Revista Mexicana de Ciencias Agrícolas 14(3): 449-458. https://doi.org/10.29312/remexca.v14i3.3091

Fernández-García N, Olmos E, Bardisi E, García-De la Garma J, López-Berenguer C, Rubio-Asensio JS (2014) Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). Journal of Plant Physiol 171: 64-75. https://doi.org/10.1016/j.jplph.2013.11.004

Fischer M, Husi R, Prati D, Peintinger M, van Kleunen, M, Schmid B (2000) RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). American Journal of Botany 87: 1128-1137. https://doi.org/10.2307/2656649

Ghonaim MM, Mohamed HI, Omran AA (2021) Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers. Genetic Resources and Crop Evolution 68: 227-242. https://doi.org/10.1007/s10722-020-00981-w

Glenn EP, Nelson SG, Ambrose B, Martinez R, Soliz D, Pabendinskas V, Hultine K (2012) Comparison of salinity tolerance of three Atriplex spp. in well-watered and drying soils. Environmental and Experimental Botany 83: 62-72. https://doi.org/10.1016/j.envexpbot.2012.04.010

Gratani L (2014) Plant phenotypic plasticity in response to environmental factors. Advances in Botany 2014. https://doi.org/10.1155/2014/208747

Hameed M, Ashraf M, Naz N (2009) Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the salt range, Pakistan. Plant and Soil 322: 229-238. https://doi.org/10.1007/s11104-009-9911-6

Hassani A, Azapagic A, Shokri N (2021) Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications 12: 6663. https://doi.org/10.1038/s41467-021-26907-3

Henderson AN, Crim PM, Cumming JR, Hawkins JS (2020) Phenotypic and physiological responses to salt exposure in Sorghum reveal diversity among domesticated landraces. American Journal of Botany 107: 983-992. https://doi.org/10.1002/ajb2.1506

Hernández-Verdugo S, González-Sánchez RA, Porras F, Parra-Terraza S, Valdez-Ortiz A, Pacheco-Olvera A, López-España RG (2015) Plasticidad fenotípica de poblaciones de chile silvestre (Capsicum annuum var. glabriusculum) en respuesta a disponibilidad de luz. Botanical Sciences 93(2): 231-240. https://doi.org/10.17129/botsci.237

Hernández-Verdugo S, Guevara-González RG, Rivera-Bustamante RF, Vázquez-Yáñez C, Oyama K (1998) Los parientes silvestres del chile (Capsicum ssp.) como recursos genéticos. Boletín de la Sociedad Botánica de México 62: 171-181. https://doi.org/10.17129/botsci.1559

Hernández-Verdugo S, López-España RG, Sánchez-Peña P, Villarreal-Romero M, Parra-Terraza S, Porras F, Corrales-Madrid JL (2008) Phenotypic variation among and within wild populations of pepper from northwest Mexico. Revista Mexicana de Fitotecnia 31: 323-330. https://doi.org/10.35196/rfm.2008.4.323

Hernández-Verdugo S, Luna-Reyes R, Oyama K (2001) Genetic structure and differentiation of wild and semidomesticated populations of Capsicum annuum (Solanaceae) from Mexico. Plant Systematics and Evolution. 226: 129-142. https://doi.org/10.1007/s006060170061

Hernández-Verdugo S. Porras F, Pacheco-Olvera A, López-España RG, Villarreal-Romero M, Parra-Terraza S, Osuna Enciso T (2012) Caracterización y variación ecogeográfica de poblaciones de chile (Capsicum annuum var. glabriusculum) silvestre del noroeste de México. Polibotánica (33): 175-191.

IPGRI, AVRDC, CATIE (1995) Descriptors for Capsicum (Capsicum spp.). International Plant Genetic Resources Institute, Rome, Italy; the Asian Vegetable Research and Development Center, Taipei, Taiwan, and the Centro Agronómico Tropical de Investigación y Enseñanza. Turrialba, Costa Rica. 114p https://cgspace.cgiar.org/items/ef0f3bcd-4878-4025-90ed-098a4c1b2918. Fecha de consulta: 21 de mayo 2024.

Javed M, Ashraf M, Iqbal M, Farooq MA, Zafar ZU, Athar HUR (2022) Chlorophyll fluorescence, ion uptake, and osmoregulation are potential indicators for detecting ecotypic variation in salt tolerance of Panicum antidotale Retz. Arid Land Research and Management 36(1): 84-108. https://doi.org/10.1080/15324982.2021.1957038

Kano-Nakata M, Nakamura T, Mitsuya S, Yamauchi A (2019) Plasticity in root system architecture of rice genotypes exhibited under different soil water distributions in soil profile. Plant Production Science 22(4): 501-509. https://doi.org/10.1080/1343943X.2019.1608836

Lienert J (2004) Habitat fragmentation effects on fitness of plant populations–a review. Journal for Nature Conservation 12: 53-72. https://doi.org/10.1016/j.jnc.2003.07.002

López-Aguilar R, Medina-Hernández D, Ascencio-Valle F, Nieto-Garibay A, Arce-Montoya M, Larrinaga-Mayoral JA, Gómez-Anduro GA (2012) Differential responses of Chiltepin (Capsicum annuum var. glabriusculum) and Poblano (Capsicum annuum var. annuum) hot peppers to salinity at the plantlet stage. African Journal of Biotechnology 11(11): 2642. https://doi.org/10.5897/AJB11.2542

López-España RG, Hernández-Verdugo S, Parra-Terraza S, Pacheco-Olvera A, Valdéz-Ortiz A, Osuna-Enciso T, Muy-Rangel MD (2016) Diferenciación geográfica de poblaciones de chiles silvestres (Capsicum annuum L. var. glabriusculum) del noroeste de México. Phyton - International Journal of Experimental Botany 85: 131-141. https://doi.org/10.32604/phyton.2016.85.131

Matesanz S, Ramos-Muñoz M, Moncalvillo B, Rubio TML, García DSL, Romero J, Iriondo JM (2020) Plasticity to drought and ecotypic differentiation in populations of a crop wild relative. AoB Plants 12(2): plaa006. https://doi.org/10.1093/aobpla/plaa006

Munns R, Wallace PA, Teakle NL, Colmer T D (2010) Measuring soluble ion concentrations (Na+, K+, Cl−) in salt-treated plants. Plant stress tolerance: Methods and Protocols: 371-382. https://doi.org/10.1007/978-1-60761-702-0_23

Olsson K, Ågren J (2002) Latitudinal population differentiation, life history and flower morphology in perennial herb Lythrum salicaria. Journal of Evolutionary Biology 15: 983-996. https://doi.org/10.1046/j.1420-9101.2002.00457.x

Osuna-Rodríguez, JM, Hernández-Verdugo S, Osuna-Enciso T, Pacheco-Olvera A, Parra-Terraza S, Romero-Higareda CE, Retes-Manjarrez JE (2023) Variations in salinity tolerance in wild pepper (Capsicum annuum L. var. glabriusculum) populations. Chilean Journal of Agricultural Research 83(4): 432-443. http://dx.doi.org/10.4067/S0718-58392023000400432

Oyama K, Hernández-Verdugo S, Sánchez C, González-Rodríguez A, Sánchez-Peña P, Garzón-Tiznado JA, Casas A (2006) Genetic structure of wild and semidomesticated populations of Capsicum annuum (Solanaceae) from northwestern Mexico analyzed by RAPDs. Genetic Resources and Crop Evolution 53: 553-562. https://doi.org/10.1007/s10722-004-2363-1

Pacheco-Olvera A, Hernández-Verdugo S, Rocha-Ramírez V, González-Rodríguez A, Oyama K (2012) Genetic diversity and structure of pepper (Capsicum annuum L.) from northwestern Mexico analyzed by microsatellites markers. Crop Science 52: 231-241. https://doi.org/10.2135/cropsci2011.06.0319

Penella C, Landi M, Guidi L, Nebauer SG, Pellegrini E, San Bautista A, Remorini D, Nali C, López-Galarza S, Calatayud A (2016) Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology 193: 1-11. https://doi.org/10.1016/j.jplph.2016.02.007

Pérez-Grajales M, González-Hernández VA, Peña-Lomelí A, Sahagún-Castellanos J (2009) Aptitud combinatoria y heterosis en rendimiento y calidad de frutos de chile manzano (Capsicum pubescens R & P) criollo. Revista Chapingo. Serie Horticultura 15(1): 103-109. http://dx.doi.org/10.5154/r.rchsh.2009.15.014

Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Functional Plant Biology 37(7): 613-620. https://doi.org/10.1071/FP09249

Retes-Manjarrez JE, Hernández-Verdugo S, Pariaud B, Hernández-Espinal LA, Parra-Terraza S, Trejo-Saavedra D, Rivera-Bustamente RF, Garzón-Tiznado J (2018) Resistance to pepper Huasteco yellow vein virus and its heritability in wild genotypes of Capsicum annuum. Botanical Sciences 96: 52-62. https://doi.org/10.17129/botsci.1029

Rewald B, Shelef O, Ephrath JE, Rachmilevitch S (2013) Adaptive plasticity of salt-stressed root systems. Ecophysiology and Responses of Plants Under Salt Stress 169-201. https://doi.org/10.1007/978-1-4614-4747-4_6

Rice KJ, Mack RN (1991) Ecological genetics of Bromus tectorum I. A hierarchical analysis of phenotypic variation. Oecologia 88: 77-83. https://doi.org/10.1007/BF00328406

Romero-Higareda CE, Hernández-Verdugo S, Pacheco-Olvera A, Retes-Manjarrez JE, Osuna-Enciso T, Valdéz-Ortiz Á (2023) Phenotype differentiation of Capsicum annuum var. glabriusculum of three regions in Mexico and its relation to climate. Botanical Sciences 101: 744-760. https://doi.org/10.17129/botsci.3289

Romero-Higareda, CE, Hernández-Verdugo S, Pacheco-Olvera A, Núñez-Farfán J, Retes-Manjarrez E, López-Orona C, Osuna-Enciso T (2022) ttADAPTIVE PHNEOTYPIC plasticity of wild Capsicum annuum (Solanaceae) to variable environments of water-light availability. Acta Oecologica 114: 103807. https://doi.org/10.1016/j.actao.2021.103807

Sandhu N, Raman K A, Torres RO, Audebert A, Dardou A, Kumar A, Henry A (2016) Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiology 171(4): 2562-2576. https://doi.org/10.1104/pp.16.00705

Schmid M, Guillaume F (2017) The role of phenotypic plasticity on population differentiation. Heredity 119: 214-225. https://doi.org/10.1038/hdy.2017.36

Schneider HM, Lynch JP (2020) Should root plasticity be a crop breeding target? Frontiers in Plant Science 11: 534260. https://doi.org/10.3389/fpls.2020.00546

Shahid SA, Zaman M, Heng L (2018) Soil salinity: Historical perspectives and a world overview of the Problem. In: Zaman M, Shahid SA, Heng L (ed) Guideline for Salinity Assessment, Mitigation and adaptation using nuclear and related techniques. Vienna, Autralia. pp: 43-53. https://doi.org/10.1007/978-3-319-96190-3_2

Shelden MC, Munns R (2023) Crop root system plasticity for improved yields in saline soils. Frontiers in Plant Science 14: 1120583. https://doi.org/10.3389/fpls.2023.1120583

Steiner AA (1984) The universal nutrient solution. Proceeding of the Sixth International Congress on Soilless Culture, Lunteren. 29 April-5 May. International Society for Soilless Culture (ISOSC), Wageningen, The Netherland. p. 633-649.

Stotz GC, Salgado‐Luarte, C, Escobedo VM, Valladares F, Gianoli E (2021) Global trends in phenotypic plasticity of plants. Ecology Letters 24: 2267-2281. https://doi.org/10.1111/ele.13827

Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytologist 176: 749-763. https://doi.org/10.1111/j.1469-8137.2007.02275.x

Van-Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71: 403-433. https://doi.org/10.1146/annurev-arplant-050718-100005

Velikova V, Arena C, Izzo LG, Tsonev T, Koleva D, Tattini M, Roeva O, De Maio A, Loreto FV (2020) Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two Platanus orientalis populations from contrasting habitats. International Journal of Molecular Sciences 21: 3912. https://doi.org/10.3390/ijms21113912

Venable DL, Búrquez A (1989) Quantitative genetics of size, shape, life-history and fruit characteristics of the seed heteromorphic composite Heterosperma pinnatum. Evolution 43: 113-124. https://doi.org/10.1111/j.1558-5646.1990.tb05246.x

Verhoeven KJ, van Gurp TP (2012) Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion. PLOS ONE 7: e38605. https://doi.org/10.1371/journal.pone.0038605

Votava E, Nabhan G, Bosland P (2002) Genetic diversity and similarity revealed via molecular analysis among and within an in situ population and ex situ accessions of chiltepín (Capsicum annuum var. glabriusculum). Conservation Genetics 3: 123-129. https://doi.org/10.1023/A:1015216504565

Young AG, Merriam HG, Warwick SI (1993) The effects of forest fragmentation on genetic variation in Acer saccharum Marsh. (sugar maple) populations. Heredity 71: 277-289. https://doi.org/10.1038/hdy.1993.136

Zhao C, Zhang H, Song, C, Zhu JK, Shabala S (2020) Mechanisms of plant responses and adaptation to soil salinity. The innovation 1(1). https://doi.org/10.1016/j.xinn.2020.100017

Descargas

Publicado

2024-09-11

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Osuna Rodríguez, J. M., Hernández Verdugo, S., Pacheco Olvera, A., Osuna Enciso, T., Parra Terraza, S., & Romero Higareda, C. E. (2024). Efecto de la salinidad en poblaciones de chile silvestre del Noroeste de México: Salinidad y diferenciación fenotípica en poblaciones de chile silvestre . Ecosistemas Y Recursos Agropecuarios, 11(3). https://doi.org/10.19136/era.a11n3.4092

Artículos similares

21-30 de 1219

También puede Iniciar una búsqueda de similitud avanzada para este artículo.