Efectos de genotipo, consumo de alimento y día de medición en las variables metabolizables de gallos
DOI:
https://doi.org/10.19136/era.a12n2.4125Palabras clave:
Criollo, consumo de alimento, estrés, manejo, SassoResumen
Se realizó un estudio para conocer la interacción del genotipo de gallos (Criollo y Sasso) con el consumo de alimento (100 y 50 g día-1) y los efectos del día de medición (1 a 7 días consecutivos) en las variables metabolizables (g día-1 o cal día-1, y %): proteína cruda, extracto etéreo, fibra cruda y energía (expresada además en kcal g-1 de dieta). Fueron 84 observaciones por variable, 6 del genotipo Criollo, 6 del Sasso, 7 días: (6 + 6)×7 bajo dos diseños completamente aleatorizados, factor tiempo con 7 niveles (días de medición) y arreglo factorial 2×2 (dos genotipos por dos niveles de consumo). Los días 1 a 4 casi todas las variables fueron similares (p > 0.05) pero mayores (p < 0.05) que sus valores en los días 5 a 7. Contrariamente a las demás variables de respuesta, que no cambiaron o disminuyeron, del día 1 al 4 el extracto etéreo metabolizable aumentó. Los gallos Criollos metabolizaron más proteína que los Sasso, quienes metabolizaron más lípidos que los primeros. Todas las variables de respuesta fueron mayores cuando el consumo fue de 100 g día-1 que cuando fue de 50 g día-1. Aunado al manejo de más de 4 días, el consumo disminuido de alimento también provoca estrés por lo que se recomienda hacer la medición de energía y nutrientes metabolizables de las dietas, los dos primeros días después del proceso de adaptación y entrenamiento, y que los gallos consuman por lo menos 100 g de alimento por día.
Descargas
Referencias
Abdollahi MR, Wiltafsky-Martin M, Ravindran V (2021) Application of apparent metabolizable energy versus nitrogen-corrected apparent metabolizable energy in poultry feed formulations: A Continuing conundrum. Animals 11(8): 2174. https://doi.org/10.3390/ani11082174
Abella LB, Sulabo RC, Agbisit EM, Angeles AA (2024) Energy digestibility and concentration of nitrogen-corrected apparent metabolizable energy of Azolla and Duckweed in broiler. International Journal of Agricultural Technology 20(2): 467-476.
Adamu J, Dauda A, Abbaya H (2019) Effect of genotype and seasons on semen characteristics of three indigenous cock types in the semiarid zone of Nigeria. International Journal of Avian & Wildlife Biology 4(3): 90-94. https://doi.org/10.15406/ijawb.2019.04.00158
Adekoya AA, Adeola O (2023) Energy and phosphorus utilization of pulses fed to broiler chickens. Poultry Science 102 (5): 102615. https://doi.org/10.1016/j.psj.2023.102615
Adhikari P, Kiess A, Adhikari R, Jha R (2020) An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. Journal of Applied Poultry Research 29(2): 515-534. https://doi.org/10.1016/j.japr.2019.11.005
Aguirre L,_Cámara C, Smith A, Fondevila G, Mateos GG (2024) Apparent metabolizable energy and ileal aminoacid digestibility of commercial soybean meals of different origins in broilers. Poultry Science 103:103786. https://doi.org/10.1016/j.psj.2024.103786
Alvarenga RR, Zangeronimo MG, Pereira LJ, Wolp RC, Almeida EC (2013) Formulation of diets for poultry: the importance of prediction equations to estimate the energy values. Archivos de Zootecnia 62: 1-11.
AOAC (1990) Official methods of analysis. 15th ed. Association of Official Analytical Chemists, Arlington, VA, USA. 1141p.
Anwar U, Chishti, M FA, Bilal M, Farooq U, Mustafa R, Zamir S, Rahman M (2023) Inclusion of stored wheat in the feed of broilers influences intake, growth performance, nutrient digestibility, and digesta viscosity from 1-21 days of age. Brazilian Journal of Poultry Science 25(2). https://doi.org/10.1590/1806-9061-2022-1736
Bartz BM, McIntyre DR and Grimes JL (2018) Effects of management related practices on turkey hen performance supplemented with either original XPCTM or AviCareTM. Frontiers in Veterinary Science 5:185. https://doi.org/10.3389/fvets.2018.00185
Barzegar S, Wu SB, Choct M, Swick RA (2020) Factors affecting energy metabolism and evaluating net energy of poultry feed. Poultry Science 99(1): 487-498. https://doi.org/10.3382/ps/pez554
Bedanova I, Voslarova E, Chloupek P, Pistekova V, Suchy P, Blahova J, Dobsikova R, Vecerek V (2007) Stress in broilers resulting from shackling. Poultry Science 86:1065-1069. https://doi.org/10.1093/ps/86.6.1065
Berardo N (1997) Prediction of the chemical composition of white clover by near-infrared reflectance spectroscopy. Grass and Forage Science 52(1): 27-32. https://doi.org/10.1046/j.1365-2494.1997.00050.x.
Cammell SB, Thomson DJ, Beever DE, Haines MJ, Dhanoa MS, Spooner MC (1986) The efficiency of energy utilization in growing cattle consuming fresh perennial ryegrass (Lolium perenne cv. Melle) or white clover (Trifolium repens cv. Blanca). British Journal of Nutrition 55(3): 669-680. https://doi.org/10.1079/BJN19860073
Chaiwang N, Marupanthorn K, Krutthai N, Wattanakul W, Jaturasitha S, Arjin C, Sringarm K, Setthaya P. (2023) Assessment of nucleic acid content, amino acid profile, carcass, and meat quality of Thai native chicken. Poultry Science 102(11): 103067. https://doi.org/10.1016/j.psj.2023.103067
COLPOS (2016) Reglamento para el uso y cuidado de animales destinados a la investigación en el Colegio de Postgraduados. Colegio de Postgraduados Campus Montecillo, Editorial Colegio de Posgraduados. Montecillo, Estado de México, México. 18p.
Dias KMM, Oliveira CH, Calderano AA, Bernardes RD, Ribeiro AM, Lima IL, Mike BP, Rostagno HS, Albino LFT (2023) Research note: Nitrogen-corrected apparent metabolizable energy and standardized ileal amino acid digestibility determination of high-protein dried distiller's grains and corn bran with solubles for broilers. Poultry Science 102(7): 102757. https://doi.org/10.1016/j.psj.2023.102757
Eshtejarani AA, Moravej H, Ghaziani F, Naeini HR, Kim WK (2024) Development of prediction equations for apparent metabolizable energy corrected for nitrogen of fishmeal and poultry by-product meal in broiler chickens. Journal of Applied Poultry Research 33: 100485. https://doi.org/10.1016/j.japr.2024.100485
Ieko T, Sasaki H, Maeda N, Fujiki J, Iwano H, Yokota H (2019) Analysis of corticosterone and testosterone synthesis in rat salivary gland homogenates. Frontiers in Endocrinology 10: 479. https://doi.org/10.3389/fendo.2019.00479
Jiang QLY, Ban Z, Zhang B (2024) Broiler age differently affects apparent metabolizable energy and net energy of expanded soybean meal. Animals 14(8): 1198. https://doi.org/10.3390/ani14081198
Khalil MM, Abdollahi MR, Zaefarian F, Chrystal PV, Ravindran V (2023) Broiler age Influences the apparent metabolizable energy of soybean meal and canola meal. Animals 13: 219. https://doi.org/10.3390/ani13020219
Lasek O, Barteczko J, Barć J, Micek P (2020) Nutrient content of different wheat and maize varieties and their impact on metabolizable energy content and nitrogen utilization by broilers. Animals 10(5): 907. https://doi.org/10.3390/ani10050907
Li K, Guosong Bai, Zhengqun Liu, Yuqing Zhao, Ruqing Zhong, Lei Liu, Honglin Yan, Jianchuan Zhou, Liang Chen, Hongfu Zhang (2023) Comparison of metabolizable energy values of wheat, paddy, and brown rice in roosters determined by free-feeding and tube-feeding methods. Animal Research and One Health 2(2): 193-203.
Li X, Zhao X, Yu M, Zhang M, Feng J (2024) Effects of heat stress on breast muscle metabolomics and lipid metabolism related genes in growing broilers. Animals 14(3): 430. https://doi.org/10.3390/ani14030430
Macie VA, Nascimento KDS, Kiefer C, Juliano RS, Lisita FO, da Silva TR, Rosa-Silva M (2020) Metabolizable energy and metabolizability coefficients of moringa and bocaiuva for slow-growing broilers at different ages. Journal of Agricultural Studies 8: 3. https://doi.org/10.5296/jas.v8i3.16559
Malik A, Haron AW, Yusoff R, Nesa M, Bukar M, KASIM A (2013) Evaluation of the ejaculate quality of the red jungle fowl, domestic chicken, and bantam chicken in Malaysia. Turkish Journal of Veterinary & Animal Sciences 37(5): 564-568. http://dx.doi.org/10.3906/vet-1107-26
Noblet J, Aye-Cho Tay-Zar, Shu-Biao Wu, Pairat Srichana, Pierre Cozannet, Pierre-André Geraert, Mingan Choct (2024) Re-evaluation of recent research on metabolic utilization of energy in poultry: Recommendations for a net energy system for broilers. Animal Nutrition 16: 62e72. https://doi.org/10.1016/j.aninu.2023.10.006
NRC (1994) Nutrient Requirements of Poultry. 9th rev. ed. National Research Council. National Academy Press, Washington, DC. 19p.
Paredes M, Vásquez B (2020) Crecimiento, características de carcasa, peso de órganos internos y composición proximal de carne de seis genotipos de pollos criados en la región Andina del norte peruano. Scientia Agropecuaria 11(3): 365-374. http://dx.doi.org/10.17268/sci.agropecu.2020.03.08
Pirgozliev VR, Hammandy MH, Mansbridge SC, Whiting IM, Rose SP (2024) Efficiency of utilization of metabolizable energy for carcass energy retention in broiler chickens fed maize, wheat or a mixture. Poultry 3: 85-94. https://doi.org/10.3390/poultry3020008
Rattray PV, Joyce JP (1974) Nutritive value of white clover and perennial ryegrass: IV. Utilisation of dietary energy. New Zealand journal of agricultural research 17(4): 401-406. https://doi.org/10.1080/00288233.1974.10421024
Reid OLT.K. Gardner KE, Paglia KL, Ulans ACM, Spierling RE, Edwards MS, Lundquist TJ, McFarlane ZD, Pokharel S, Bennett DC (2024) Evaluation of apparent metabolizable energy and apparent ileal amino acid digestibility of spirulina (Arthrospira platensis) in broiler chickens and laying hens. Animals 14: 3343. https://doi.org/10.3390/ani14223343
Sánchez-Peña MJ, Márquez-Sandoval F, Ramírez-Anguiano AC, Velasco-Ramírez SF, Macedo-Ojeda G, González-Ortiz LJ (2017) Calculating the metabolizable energy of macronutrients: a critical review of Atwater’s results. Nutrition reviews 75(1): 37-48. https://doi.org/10.1093/nutrit/nuw044
Santos FR, Stringhini JH, Oliveira PR, Duarte EF, Minafra CS, Café MB (2015) Values of metabolizable energy and metabolization of nutrients for slow-and fast-growing birds at different ages. Brazilian Journal of Poultry Science 17: 517-522.
Scanes CG, Hurst K, Thaxton Y, Archer GS, Johnson A (2020) Effect of transportation and shackling on plasma concentrations of corticosterone and heterophil to lymphocyte ratios in market weight male turkeys in a commercial operation. Poultry Science 99: 546-554. http://dx.doi.org/10.3382/ps/pez485
Schang MJ, Hamilton RMG (1982) Comparison of two direct bioassays using adult cocks and four indirect methods for estimating the metabolizable energy content of different feedingstuffs. Poultry Science 61(7): 1344-1353. https://doi.org/10.3382/ps.0611344
Sibbald IR (1975) The effect of level of feed intake on metabolizable energy values measuredwith adult roosters. Poultry Science 54(6): 1990-1997. https://doi.org/10.3382/ps.0541990
Sibbald IR (1976) A bioassay for true metabolizable energy in feedingstuffs. Poultry science 55(1): 303-308. https://doi.org/10.3382/ps.0550303
Sibbald IR (1980) Metabolizable energy in poultry nutrition. BioScience 30(11): 736-741. https://doi.org/10.2307/1308333
Sibbald IR, Morse PM (1982) The effects of feed input and excreta collection time on estimates of metabolic plus endogenous energy losses in the bioassay for true metabolizable energy. Poultry Science 62(1): 68-76. https://doi.org/10.3382/ps.0620068
Solanki DS, Devi DD (2020) Relation between nutrition and immunity. Journal of Entomology and Zoology Studies 8(4): 2337- 2342. https://dx.doi.org/10.22271/j.ento
Sosa-Montes E, Sánchez-Cervantes A, Pro-Martínez A, Mendoza-Pedroza SI, González-Cerón F (2022) Physical characteristics of eggs from Mexican Creole, Hy-Line Brown and Rhode Island Red hens in intensive production. Agroproductividad 15(7): 195-203. https://doi.org/10.32854/agrop.v15i7.2337
SPSS (2011) Statistical Package for the Social Sciences Institute. SPSS-X. User’s Guide. Version 8, Chicago IL. USA. 71p.
Stypiñsk P (1993) The effects of white clover on chemical composition and nutritive value of companion grasses in grass/clover mixtures. Department of Grassland The Warsaw Agricultural University 02-528 Warsaw, Rakowiscka 26/30 POLAND. https://www.fao.org/3/V2350E/v2350e0f.htm#introduction. Fecha de consulta: 28 de marzo de 2024.
Usman E, Saade E, Sulaeman HA, Jannah NM, Kamaruddin (2020) The effcts of seaweed, Sargassum sp. meal dosages in the artificial diet on growth, feed intake, feed efficiency, protein efficiency ratio, and nutrition body composition of Rabbitfish, Siganus guttatus. In IOP Conference Series: Earth and Environmental Science 564(1): 012049. https://doi.org/10.1088/1755-1315/564/1/012049
Van-Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3883-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Von-Bobrutzki K, Ammon S, Berg W, Fiedler M (2013) Quantification of nitrogen balance components in a commercial broiler barn. Animal Science 58: 566-577. https://doi.org/10.17221/7091-CJAS
Wolynetz MS, Sibbald IR (1984) Relationships between apparent and true metabolizable energy and the effects of a nitrogen correction. Poultry science 63(7): 1386-1399. https://doi.org/10.3382/ps.0631386
Wu SB, Choct M, Pesti G (2020) Historical flaws in bioassays used to generate metabolizable energy values for poultry feed formulation: a critical review. Poultry Science 99(1): 385-406. http://dx.doi.org/10.3382/ps/pez511
Xavier JMdL, Ferreira RdS, Teixeira LdV, Valentim JK, Gomes KM, Bernandes RD, Calderano AA, Albino LFT (2024) Metabolizable energy and amino acid digestibility of soybean meal from different sources for broiler chickens supplemented with protease. Animals 14(5): 782. https://doi.org/10.3390/ani14050782
Ye X, Feng Z, Yuming W, Jingjing X, Hu Z, Renna S, Zheng S, Xiudong L, Lin L, Jinghai F (2024) Predicting metabolizable energy of soybean meal and rapeseed meal from chemical composition in broilers of different ages. Poultry Science 103: 103915 https://doi.org/10.1016/j.psj.2024.103915
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Ecosistemas y Recursos Agropecuarios

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia CC BY-NC-ND 4.0 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
This work is licensed under CC BY-NC-ND 4.0