Effect of maltodextrin and zinc oxide nanoparticles on biomass and yield in cucumber
DOI:
https://doi.org/10.19136/era.a10nNEIII.3699Keywords:
bioestimulants, MDP, MDX, NPZnO, NPZnO-MDXAbstract
Climate change and population growth demand the search for new and innovative alternatives to improve the growth and production of crops based on a sustainable agriculture system. The aim of this work was to study the biostimulant effect of maltodextrin and zinc oxide nanoparticles on biomass and yield parameters of cucumber. The experiment was established under a randomized complete block design with a 5X2 factorial arrangement, with eight repetitions. The treatments consisted of four biostimulants and a control treatment and two application routes (foliar and drench). The biostimulants evaluated were pure maltodextrin, refined maltodextrin, zinc oxide nanoparticles alone and coated with maltodextrin, applied at 1000 ppm. Variables of fresh and dry aerial weight, fresh and dry root weight, number, weight, polar diameter and equatorial diameter of the fruit were measured. The results indicate that pure and refined maltodextrin increased aerial dry weight by 26.74% and 23.30%, respectively, when applied by foliar application. In addition, the application of maltodextrin via foliar increased the number of fruits by 31.56%, while the zinc oxide nanoparticles via drench by 32.39%. The route of application of the biostimulants had a significant impact on the aerial dry weight, number of fruits, polar diameter of the fruit and equatorial diameter of the fruit. Both maltodextrin and zinc oxide nanoparticles, in both presentations, showed positive biostimulant effects on the biomass and quality of cucumber fruits.
Downloads
References
Baldoquin-Hernández M, García MA, Gómez-Masjuan Y, Bertot Arosa IJ (2015) Respuesta agronómica del cultivo de la lechuga (Lactuca sativa L.) variedad Black Seed Simpson ante la aplicación de bioestimulante Enerplant. Revista Centro Agrícola 42: 55-59.
Brown P, Saa S (2015) Biostimulants in agriculture. Frontiers in plant science 6: 671. DOI: 10.3389/fpls.2015.00671.
Di-Vittori L, Mazzoni L, Battino M, Mezzetti B (2018) Pre-harvest factors influencing the quality of berries. Scientia Horticulturae 233: 310-322.
Dimkpa CO, Andrews J, Sanabria J, Bindraban PS, Singh U, Elmer WH, White JC (2020) Interactive effects of drought, organic fertilizer, and zinc oxide nanoscale and bulk particles on wheat performance and grain nutrient accumulation. Science of the Total Environment 722: 137808. DOI: 10.1016/j.scitotenv.2020.137808.
Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196: 3-14.
Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO (2019) El papel de la nanotecnología en la fortificación de los nutrientes de las plantas y la mejora de la producción de cultivos. Ciencias Aplicadas 9(3): 499. DOI: 10.3390/app9030499.
Farouk S (2023) Role of biostimulants in plant’s life cycle. In Biostimulants in Alleviation of Metal Toxicity in Plants (pp. 75-106). Academic Press. DOI: 10.1016/B978-0-323-99600-6.00010-4.
Ghani MI, Saleem S, Rather SA, Rehmani MS, Alamri S, Rajput VD, Kalaji HM, Saleem N, Sial TA, Liu M (2022) Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere 289: 133202. DOI: 10.1016/j.chemosphere.2021.133202.
Gilbertson LM, Pourzahedi L, Laughton S, Gao X, Zimmerman JB, Theis TL, Westerhoff P, Lowry GV (2020) Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology 15: 801-810.
Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials 13(4): Art. 4. DOI: 10.1038/nmat3890.
González-García Y, González-Moscoso M, Hernández-Hernández H, Méndez-López A, Juárez-Maldonado A (2021) Induction of stress tolerance in crops by applying aanomaterials. In: Ingle AP (ed) Nanotechnology in plant growth promotion and protection. John Wiley & Sons, Ltd. India. pp: 129-169.
González-González MF, Ocampo-Alvarez H, Santacruz-Ruvalcaba F, Sánchez-Hernández CV, Casarrubias-Castillo K, Becerril-Espinosa A, Castañeda-Nava JJ, Hernández-Herrera RM (2020) Physiological, ecological, and biochemical implications in tomato plants of two plant biostimulants: Arbuscular mycorrhizal fungi and seaweed extract. Frontiers in Plant Science 11: 999. DOI: 10.3389/fpls.2020.00999.
González-Morales S, Cárdenas-Atayde PA, Garza-Alonso CA, Robledo-Olivo A, Benavides-Mendoza A (2022) Plant biostimulation with nanomaterials: A physiological and molecular standpoint. In: Fernandes-Fraceto L, Pereira-de-Carvalho HW, de Lima R, Ghoshal S, Santaella C (eds) Inorganic nanopesticides and nanofertilizers. Springer, Cham. pp: 153-185. DOI: 10.1007/978-3-030-94155-0_5.
Han X, Xi Y, Zhang Z, Mohammadi MA, Joshi J, Borza T, Wang-Pruski G (2021) Effects of phosphite as a plant biostimulant on metabolism and stress response for better plant performance in Solanum tuberosum. Ecotoxicology and Environmental Safety 210: 111873. DOI: 10.1016/j.ecoenv.2020.111873.
Hsieh CH (2007) Spherical zinc oxide nano particles from zinc acetate in the precipitation method. Journal of the Chinese Chemical Society 54: 31-34.
Juárez-Maldonado A, Ortega-Ortíz H, Morales-Díaz AB, González-Morales S, Morelos-Moreno Á, Cabrera-De la Fuente M, Sandoval-Rangel A, Cadenas-Pliego G, Benavides-Mendoza A (2019) Nanoparticles and nanomaterials as plant biostimulants. International Journal of Molecular Sciences 20(1): Art. 1. DOI: 10.3390/ijms20010162.
Kaningini AG, Nelwamondo AM, Azizi S, Maaza M, Mohale KC (2022) Metal nanoparticles in agriculture: A review of possible use. Coatings 12(10): 10. DOI: 10.3390/coatings12101586.
Kolbert Z, Sz˝ oll ˝ osi R, Rónavári A, Molnár Á (2022) Nanoforms of essential metals: from hormetic phytoeffects to agricultural potential. Journal of Experimental Botany 73: 1825-1840.
Kolenˇcík M, Ernst D, Komár M, Urík M, Šebesta M, ˇ Durišová L’, Bujdos M, ˇCerný I, Chlpík J, Juriga M, Illa R, Qian Y, Feng H, Kratošová G, Barabaszová KˇC, Ducsay L, Aydın E (2022) Effects of foliar application of ZnO nanoparticles on lentil production, stress level and nutritional seed quality under field conditions. Nanomaterials 12(3): 310. DOI: 10.3390/nano12030310.
Liu H, Yin C, Gao Z, Hou L (2021) Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China. Agricultural Water Management 243: 106442. DOI: 10.1016/j.agwat.2020.106442.
Lolodi O (2011) Microencapsulation of colistin sodium methanesulfonate in gum arabic and maltodextrin by spray drying. Trends in Applied Sciences Research 6(8): 877.LINK: https://scialert.net/abstract/?doi=tasr.2011.877.889.
Mandal S, Anand U, López-Bucio J, Kumar M, Lal MK, Tiwari RK, Dey A (2023) Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. Environmental Research, 116357. DOI: 10.1016/j.envres.2023.116357.
Méndez-López A, González-García Y, Juárez-Maldonado (2022) Stimulatory role of nanomaterials on agricultural Mansourcrops. Mansour Ghorbanpour, Muhammad Adnan Ahahid. Nano-enabled Agrochemicals in Agriculture. Academic Press. India. pp: 219-246.
Omoarelojie LO, Kulkarni MG, Finnie JF, Van Staden J (2021) Modes of action of biostimulants in plants. In: Gupta S, Van Ataden J (ed) Biostimulants for crops from seed germination to glant development. Academic Press. India. pp: 445-459.
Pérez-Velasco EA, Betancourt Galindo R, Valdez Aguilar LA, González Fuentes JA, Puente Urbina BA, Lozano Morales SA, Sánchez Valdés S (2020) Effects of the morphology, surface modification and application methods of ZnO-NPs on the growth and biomass of tomato plants. Molecules 25(6): 1282.DOI: 10.3390/molecules25061282.
Rivera-Gutiérrez RG, Preciado-Range P, Fortis-Hernández M, Betancourt-Galindo R, Yescas-Coronado P, Orozco- Vidal JA (2021) Nanoparticulas de óxido de zinc y su efecto en el rendimiento y calidad de melón. Revista Mexicana de Ciencias Agrícolas 12: 791-803.
Rouphael Y, Giordano M, Cardarelli M, Cozzolino E, Mori M, Kyriacou MC, Bonini P, Colla G (2018) Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 8(7): 126. DOI: 10.3390/agronomy8070126.
Seppelt R, Klotz S, Peiter E, Volk M (2022) Agriculture and food security under a changing climate: An underestimated challenge. IScience 25(12): 105551. DOI: 10.1016/j.isci.2022.105551.
SIAP (2022) Panorama Agroalimentario 2022. Servicio de Información agroalimentaria y Pesquera. México. 215p.
Singh Y, Kumar U, Panigrahi S, Balyan P, Mehla S, Sihag P, Sagwal V, Singh KP, White JC, Dhankher OP (2023) Nanoparticles as novel elicitors in plant tissue culture applications: Current status and future outlook. Plant Physiology and Biochemistry, 108004. DOI: doi.org/10.1016/j.plaphy.2023.108004.
Steiner AA (1961) A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil 15: 134-154.
Wang T, Sun C, Yang Z (2023) Climate change and sustainable agricultural growth in the sahel region: Mitigating or resilient policy response?. Heliyon 9(9). DOI: 0.1016/j.heliyon.2023.e19839.
Yang Z, McClements DJ, Xu Z, Meng M, Li C, Chen L, Qiu C, Long J, Jin Z (2022) Carbohydrate-based functional ingredients derived from starch: Current status and future prospects. Food Hydrocolloids 131: 107729. DOI: 10.1016/j.foodhyd.2022.107729.
Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videga JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO Nanoparticles on Cucumber Physiological Markers and Bioaccumulation of Ce and Zn: A Life Cycle Study. Journal of Agricultural and Food Chemistry 61: 11945-11951.
Zoufan P, Baroonian M, Zargar B (2020) ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environmental Science and Pollution Research 27: 11066-11078.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ecosistemas y Recursos Agropecuarios
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).