Estimation of above-ground biomass and carbon in temperate forests of southern Mexico

Authors

DOI:

https://doi.org/10.19136/era.a11n2.3934

Keywords:

Biomass, carbon content, diameter, height, forest inventory.

Abstract

Forest inventories are tools that allow the collection and recording of information for the estimation of volume and biomass in order to determine carbon sequestration in forest biomass using regression techniques. The objective of the study was to generate allometric equation parameters that accurately estimate the biomass and total aboveground carbon content of 25 temperate species from UMAFOR 2012, San Juan Quiahije, Oaxaca. Circular sampling sites of 1000 m2 were established, where the normal diameter and total height of 16 863 trees of 25 species were taken; subsequently, biomass and aboveground carbon content were estimated through allometric equations, using SAS software. The simultaneous potential equation had the best goodness of fit, where the adjusted coefficient of determination (R2adj) was over 87% for total biomass, while the total carbon estimate had an R2adj of 99% for all species. Pinus maximinoi had the highest average biomass (35 971.85 and 2 922.03 kg) and carbon content (17 985.92 and 1 462.01 kg) in branches and stems, respectively.

Downloads

Download data is not yet available.

References

Acosta-Mireles M, Carrillo-Anzures F, Gómez-Villegas RG (2011) Estimación de biomasa y carbono en dos especies de bosque mesófilo de montaña. Revista mexicana de ciencias agrícolas 2(4): 529-543.

Aguirre-Calderón OA (2015) Manejo Forestal en el Siglo XXI. Madera y Bosques 21: 17-28.

Álvarez-González JG, Rodríguez-Soalleiro R, Rojo-Alboreca A (2007) Resolución de problemas del ajuste simultáneo de sistemas de ecuaciones: heterocedasticidad y variables dependientes con distinto número de observaciones. Cuadernos de la Sociedad Española de Ciencias Forestales 23: 35-42.

Aquino-Ramírez M, Velázquez-Martínez A, Castellanos-Bolaños JF, De los Santos-Posadas H, Etchevers-Barra JD (2015) Partición de la biomasa aérea en tres especies arbóreas tropicales. Agrociencia 49(3): 299-314.

Ávila G, Jiménez F, Beer J, Gómez M, Ibrahim M (2001) Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agroforestería en las Américas 8(30): 32-35.

Brown S, Lugo AE (1984) Biomass of Tropical Forest: A New Estimate Based on Forest Volume. Science, 223, 1290-1293.

http://dx.doi.org/10.1126/science.223.4642.1290.

Brown S, Sathaye M, Cannell M, Kauppi P (1996) Mitigation of carbon emission to the atmosphere by forest management. Commonwealth Forestry Review 75(1): 80-91.

Carrillo-Anzures F, Acosta-Mireles M, Jiménez-Cruz CDR, González-Molina L, Etchevers-Barra JD (2016) Ecuaciones alométricas para estimar la biomasa y el carbono de la parte aérea de Pinus hartwegii en el Parque Nacional Ixta-Popo, México. Revista Mexicana de Ciencias Agrícolas 7(3): 681-691.

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, et al. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1): 87–99.

Cuevas CJC, Aquino RM (2020) Ecuaciones de aditividad para la estimación de biomasa aérea de Pinus cembroides Zucc. Madera y Bosques 26(1) e2611821.

Díaz-Franco R, Acosta-Mireles M, Carrillo-Anzures F, Buendía-Rodríguez E, Flores-Ayala E, Etchevers-Barra JD (2007) Determinación de ecuaciones alométricas para estimar biomasa y carbono en Pinus patula Schl. et Cham. Madera y Bosques 13: 25-34.

Dong L, Zhang L, Li F (2015) Developing additive systems of biomass equations for nine hardwood species in Northeast China. Trees 29(4): 1149-1163.

Eker M, Poudel KP, Özçelik R (2017) Aboveground biomass equations for small trees of brutian pine in Turkey to facilitate harvesting and management. Forests 8(12), 477.

Flores-Medina F, Vega-Nieva D, Corral-Rivas J, Álvarez-González J, Ruiz-González A, López-Sánchez C, Carillo-Parra A (2018) Desarrollo de ecuaciones alométricas de biomasa para la regeneración de cuatro especies en Durango, México. Revista Mexicana de Ciencias Forestales 9(46): 158-185.

Fonseca-González W (2017) Revisión de métodos para el monitoreo de biomasa y carbono vegetal en ecosistemas forestales tropicales. Revista de Ciencias Ambientales 51(2): 91-109.

Gaillard C, Pece M, Juárez M (2002) Biomasa aérea de quebracho blanco (Aspidosperma quebracho-blanco) en dos localidades del Parque Chaqueño Seco. Revista Ciencias Ambientales – Quebracho 9:116-127.

González MZ (2008) Estimación de la biomasa aérea y la captura de carbono en regeneración natural de Pinus maximinoi H. E. Moore, Pinus oocarpa var. ochoterenai Mtz. y Quercus sp. en el norte del Estado de Chiapas, México. Tesis de Maestría. Manejo y Conservación de Bosques Naturales y Biodiversidad. CATIE. Turrialba, Costa Rica. 97 p.

Graciano-Ávila G, Alanís-Rodríguez E, Aguirre-Calderón OA, González-Tagle MA, Treviño-Garza EJ, Mora-Olivo A, Buendía-Rodríguez E (2019) Estimación de volumen, biomasa y contenido de carbono en un bosque de clima templado-frío de Durango, México. Revista fitotecnia mexicana 42(2): 119-127.

Harvey AC (1976) Estimating regression models with multiplicative heteroscedasticity. Econometrica: Journal of the Econometric Society 44(3): 46-465.

Husch B (2001) Estimación del contenido de carbono de los bosques. In: Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales, 18-30 de Octubre de 2001. Universidad Austral de Chile. Valdivia, Chile. pp:87-92.

INEGI (2023a) Instituto Nacional de Estadística y Geografía Información geográfica. División por entidad federativa con base en el marco geoestadístico, www.inegi.gob.mx/geo/informaciongeografica/oaxaca.

INEGI (2023b) Instituto Nacional de Estadística y Geografía Sistemas de consulta. Espacio y datos de México. www.inegi.org.mx/app/mapa/espacioydatos/default.aspx?ag=202130001.

IPCC (2005) Intergovernmental Panel on Climate Change Carbon Dioxide Capture and Storage. B. Metz, O. Davidson, H. de Coninck, M. Loos and L. Meyer (eds.). Cambridge University Press. New York. USA. 431 p.

Mayaka T, Eba'a-Atyi R, Momo S (2017) Construction of multispe¬cies allometric equations: is there a statistical palliative for destructive tree sampling?. J. Trop. Forest Sci. 29: 282-296.

Meng S, Liu Q, Zhou G, Jia Q, Zhuang H, Zhou H (2017) Aboveground tree additive biomass equations for two dominant deciduous tree species in Daxing’anling, northernmost China. Journal of Forest Research 22(4): 233-240.

Miguel-Martínez A, Rodríguez-Ortiz G, Enríquez-del Valle JR, Pérez-León MI, Castañeda-Hidalgo E, Santiago-García W (2016) Factores de expansión de biomasa aérea para Pinus ayacahuite del norte de Oaxaca. Revista mexicana de ciencias agrícolas 7(7): 1575-1584.

Monroy-Rivera C, Návar-Cháidez J de J (2004) Ecuaciones de aditividad para estimar componentes de biomasa de Hevea brasiliensis Muell. Arg. en Veracruz, México. Madera y Bosques 10(2): 29-43.

Montoya-Jiménez JC, Méndez-González J, Sosa-Díaz L, Ruíz-González CG, Zermeño-González A, Nájera- Luna JA, et al. (2018) Aboveground biomass and volume equations for Pinus halepensis Mill., in Coahuila, México. Madera y bosques, 24: e2401880.

Návar J (2010) Biomass allometry for tree species of Northwestern Mexico. Trop. Subtrop. Agro-ecosyst. 12: 507-519.

Návar J, Mendez E, Najera A, Graciano J, Dale V, Parresol B (2004). Biomass equations for shrub species of Tamaulipan thornscrub of North-eastern Mexico. J. Arid Environ. 59: 657-674.

Návar, J. (2011). Plasticity of biomass component allocation patterns in semiarid Tamaulipan thornscrub and dry temperate pine species of northeastern Mexico. Polibotanica 31: 121-141.

Ordóñez-Díaz JAB, Galicia-Naranjo A, Venegas-Mancera NJ, Hernández-Tejeda T, Ordóñez-Díaz MDJ, Dávalos-Sotelo R (2015) Densidad de las maderas mexicanas por tipo de vegetación con base en la clasificación de J. Rzedowski: compilación. Madera y bosques, 21(Núm. Esp.): 77-216.

Pacheco-Escalona FC, Aldrete A, Armando Gómez-Guerrero A, Fierros-González AM, Cetina-Alcalá VM, Vaquera-Huerta H (2007) Almacenamiento de carbono en la biomasa aérea de una plantación joven de Pinus greggii Engelm. Rev. Fitotec. Mex. 30: 251-254.

Riofrío J, Herrero C, Grijalva J, Bravo F (2015) Aboveground tree additive biomass models in Ecuadorian highland agroforestry systems. Biomass and Bioenergy, 80: 252-259.

Rodríguez-Laguna R, Jiménez-Pérez J, Aguirre-Calderón ÓA, Treviño-Garza EJ, Razo-Zárate R (2009) Estimación de carbono almacenado en el bosque de pino-encino en la reserva de la Biosfera el Cielo, Tamaulipas, México. Ra Ximhai 5: 317-327.

Roxburgh SH, Wood SW, Mackey BG, Woldendorp G, Gibbons P (2006) Assessing the carbon sequestration potential of managed forests: a case study from temperate Australia. Journal of Applied Ecology 43:1149-1159.

Ruiz-Aquino F, Valdez-Hernández JI, Manzano-Méndez F, Rodríguez-Ortiz G, Romero-Manzanares A, Fuentes-López ME (2014) Ecuaciones de biomasa aérea para Quercus laurina y Q. crassifolia en Oaxaca. Madera y Bosques 20(2): 33-48.

Şahin A, Kahriman A, Göktürk, A (2019) Estimating diameter at breast height (DBH) from diameter at stump height (DST) in triple mixed stands in the region of Artvin in Turkey. Forestist 69(1): 61-67.

Schlegel B, Gayoso J, Guerra J (2000) Medición de la capacidad de captura de carbono en bosques de Chile y promoción en el mercado mundial: Manual de procedimientos: Muestreos de biomasa forestal. Valdivia, Chile. Universidad Austral de Chile. 24 p.

Schumacher FX, Hall FS (1933) Logarithmic expression of timbertree volume. Journal Agriculture Research 47(9): 719-734.

Silva AF (2006) Estimación de factores de expansión de biomasa y carbono en ecosistemas forestales del norte de México. Tesis de Maestría. Facultad de Ciencias Forestales Universidad Autónoma de Nuevo León. Linares, N.L. México. 78.

SiPlaFor (2015) Sistema de Planeación Forestal de Bosque Templado. Manual de usuario. Versión 2.0. http://siplafor.cnf.gob.mx/siplafor/inicio/index.php.

Sotomayor CJR (2005) Características mecánicas y clasificación de la madera de 150 especies mexicanas. Sociedad Mexicana de Ciencia y Tecnología de la Madera. Investigación e Ingeniería de la Madera, 1(1): 3-20.

SAS (2009) Static Analysis System, SAS/STAT® Ver. 9.2. User’s Guide 2nd ed. SAS Institute Inc. Cary, NC, USA. 7869 p.

Temesgen H, Affleck D, Poudel K, Gray A, Sessions J (2015) A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research 30(4):1-10.

Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. Forest Ecology and Management, 97(1), 1-24.

Tesfaye MA, Bravo-Oviedo A, Bravo F, Ruiz-Peinado R (2015) Aboveground biomass equations for sustainable production of fuelwood in a native dry tropical afro-montane forest of Ethiopia. Annals of Forest Science 73(2): 411-423.

Vargas-Larreta B, Corral-Rivas JJ, Aguirre-Calderón OA, López-Martínez JO, Santos-Posadas HM, Zamudio-Sánchez FJ, et al. (2017) SiBiFor: Forest Biometric System for forest management in Mexico. Serie Ciencias Forestales y del Ambiente 23(3): 437-455.

Vargas-Larreta B, López-Sánchez CA, Corral-Rivas JJ, López-Martínez JO, Aguirre-Calderón CG, Álvarez-González JG (2017) Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests 8(8): 269.

Downloads

Published

2024-06-12

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Guzmán-Santiago, J. C. ., De los Santos-Posadas, H. M. ., Vargas-Larreta, B. ., Gómez-Cárdenas, M. ., & Marroquín-Morales, P. . (2024). Estimation of above-ground biomass and carbon in temperate forests of southern Mexico. Ecosistemas Y Recursos Agropecuarios, 11(2). https://doi.org/10.19136/era.a11n2.3934

Similar Articles

1-10 of 319

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)