Humic acids induce growth and protection against water stress in corn native to Mexico

Humic extracts against abiotic stress

Authors

  • Reinier Hernández-Campos Instituto Politécnico Nacional, CIIDIR Oaxaca, Laboratorio de Suelos
  • Celerino Robles Instituto Politécnico Nacional, CIIDIR Oaxaca, Laboratorio de Suelos
  • Andrés Calderín-García Universidad Federal Rural de Rio de Janeiro, Departamento de Suelos, Laboratorio de Química y Biología del Suelo
  • Ernesto Castañeda-Hidalgo Instituto Tecnológico del Valle de Oaxaca, Tecnológico Nacional de México
  • Sahylin Muñiz-Becerá Instituto de Ingeniería, Universidad Nacional Autónoma de México
  • Sandra Perez-Alvares Facultad de Ciencias Agrícolas y Forestales, Universidad Autónoma de Chihuahua

DOI:

https://doi.org/10.19136/era.a11n1.3947

Keywords:

Humic substances, rainfed crop, reproductive stage, water stress, Zea mays L.

Abstract

Under controlled conditions, it has been shown that the application of humic substances (HS) favors the growth and development of plants. However, scientific evidence in rainfed cropping in open field has been poorly documented. The objective of this research, carried out at the IPN-CIIDIR Oaxaca in 2019, was to characterize the humic acids (HA) extracted from vermicompost of urban solid waste using chemical and spectroscopic techniques, and to evaluate the effect of its root application on the reproductive stage, with continuous irrigation and with induced water deficit, in three selections of native maize (Zea mays L.) from three regions of Oaxaca, Mexico, grown under field conditions. The HA promoted higher values in plant height, stem diameter, and production of root and shoot biomass, in the presence of irrigation and with induced water deficit. The relative content of water and proline was also stimulated, as well as the content of chlorophylls a, b, and (a+b). The negative effects caused by an induced water stress were attenuated by the application of HA. HA from municipal solid waste vermicompost stimulated growth parameters in the reproductive phase and induced stress protection when irrigation use was limited.

Downloads

Download data is not yet available.

References

Abbott LK, Macdonald LM, Wong MTF, Webb MJ, Jenkins SN, Farrell M (2018) Potential roles of biological amendments for profitable grain production: a review. Agriculture. Ecosystems & Environment 256: 34-50. https://doi.org/10.1016/j.agee.2017.12.021.

Alhverdizadeh S, Danaee E (2023) Effect of humic acid and vermicompost on some vegetative indices and proline content of Catharanthus roseous under low water stress. Environment and Water Engineering 9: 141-152. https://doi.org/10.22034/EWE.2022.333951.1745.

Ali U, Sajid N, Khalid A, Riaz L, Rabbani MM, Syed JH, Malik RN (2015) A review on vermicomposting of organic wastes.Environmental Progress & Sustainable Energy 34(4): 1050-1062. https://doi.org/10.1002/ep.12100

Bayat H, Moghadam AN (2019) Drought effects on growth, water status, proline content and antioxidant system in three Salvia nemorosa L. cultivars. Acta Physiologiae Plantarum 41: 149. https://doi.org/10.1007/s11738-019-2942-6.

Canellas LP, Olivares FL (2014) Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture 1(1): 3. https://doi.org/10.1186/2196-5641-1-3.

Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Pphysiology 130: 1951-1957. https://doi.org/10.1104/pp.007088.

Castro TAVT, García AC, Tavares OCH, Pereira EG, De Souza CCB, Torchia DFDO (2022) Humic acids affect photosynthetic quantum efficiency in rice under water deficit. Theoretical and Experimental Plant Physiology 34(4): 463-483.

Castro TAVT, García AC, Tavares OCH, Pereira EG, Souza CCB, Torchia DFO (2021) Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiollogy Biochemistry 162: 171–184. https://doi.org/10.1016/j.plaphy.2021.02.043.

Choudhary S, Wani KI, Naeem M (2023) Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: Polyamines and nitric oxide crosstalk. Journal of Plant Growth Regulation 42: 539–553. https://doi.org/10.1007/s00344-022-10584-7.

De Hita D, Fuentes M, García AC, Olaetxea M, Baigorri R, Zamarreño AM, García-Mina JM (2019) Humic substances: Aa valuable agronomic tool for improving crop adaptation to saline water irrigation. Water Supply 19: 1735-1740. https://doi.org/10.2166/ws.2019.047.

Eyheraguibel B, Silvestre J, Morard P (2008) Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresource Technology 99: 4206-4212. https://doi.org/10.1016/j.biortech.2007.08.082.

García AC, Olaetxea M, Santos LA, Mora V, Baigorri R, Fuentes M, García-Mina JM (2016) Involvement of hormone-and ROS-signaling pathways in the beneficial action of humic substances on plants growing under normal and stressing conditions. BioMed Research International 2016:1-13. https://doi.org/10.1155/2016/3747501.

García AC, Van Tol-de Castro TA, Santos LA, Tavares OCH, Castro RN, Berbara RLL, García‐Mina JM (2019) Structure–property–function relationship of humic substances in modulating the root growth of plants: A review. Journal of Environmental Quality 48: 1622-1632. https://doi.org/10.2134/jeq2019.01.0027.

Hernández R, Robles C, Calderín A, Guridi F, Reynaldo IM, González D (2018) Efectos antiestrés de ácidos húmicos de vermicompost en dos cultivares de arroz (Oryza sativa L.). Cultivos Tropicales 39: 65-74.

Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332-1334. https://doi.org/10.1139/b79-163.

Jindo K, Martim SA, Navarro EC, Pérez-Alfocea F, Hernández T, García C, Aguiar NO, Canellas LP (2012) Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant and Soil 353: 209–220. https://doi.org/10.1007/s11104-011-1024-3.

Johnson R, Joel JM, Puthur JT (2023) Biostimulants: The futuristic sustainable approach for alleviating crop productivity and abiotic stress tolerance. Journal of Plant Growth Regulation 1:1308641. https://doi.org/10.1007/s00344-023-11144-3.

Kato TA, Mapes C, Mera LM, Serratos JA, Bye RA (2009) Origen y diversificación del maíz: una revisión analítica. Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México. 116p.

Kim KH, Lee BM (2023) Effects of climate change and drought tolerance on maize growth. Plants 12: 3548. https://doi.org/10.3390/plants12203548.

Li M, Li S, Zhang S, Chi B (2005) Physiological effect of new FA antitranspirant on winter wheat at ear filling stage. Journal of Agricultural sciences in China 11: 820-825

López-Bucio J, Cruz-Ramırez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture.Current Opinion in Plant Biology 6: 280-287.https://doi.10.1016/S1369-5266(03)00035-9.

Mohammadi-Alagoz S, Zahra N, Hajiaghaei Kamrani M, Asgari Lajayer B, Nobaharan K, Astatkie T, Farooq M (2023) Role of root hydraulics in plant drought tolerance. Journal of Plant Growth Regulation 42: 6228-6243. https://doi.org/10.1007/s00344-022-10807-x.

Muscolo A, Pizzeghello D, Francioso O, Sanchez Cortes S, Nardi S (2020) Effectiveness of humic substances and phenolic compounds in regulating plant-biological functionality. Agronomy 10(10): 1553. https://doi.org/10.3390/agronomía10101553.

Olaetxea M, Mora V, Bacaicoa E, Baigorri R, Garnica M, Fuentes M, García‐Mina JM (2019) Root ABA and H+‐ATPase are key players in the root and shoot growth‐promoting action of humic acids. Plant Direct 3(10): 1-12. https://doi.org/10.1002/pld3.175.

Pinos NQ, Berbara RL, Tavares OCH, García AC (2019) Different structures in humic substances lead to impaired germination but increased protection against saline stress in corn. Communications in Soil Science and Plant Analysis 50: 2209-2225. https://doi.org/10.1080/00103624.2019.1659294.

Pirzad A, Shakiba MR, Zehtab-Salmasi S, Mohammadi SA, Darvishzadeh R, Samadi A (2011) Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. Journal of Medicinal Plants Research 5: 2483-2488. https://doi.org/10.5897/JMPR.9000503.

Reyes-Pérez JJ, Murillo-Amador B, Nieto-Garibay A, Troyo-Diéguez E, Reynaldo-Escobar IM, Rueda-Puente EO, Guridi-Izquierdo F (2014) Humatos de vermicompost como mitigador de la salinidad en albahaca (Ocimum basilicum L.). Revista de la Facultad de Ciencias Agrarias 46: 149-162.

Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR (2014) A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. In Advances in Aagronomy 124: 37-89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4.

Sah RP, Chakraborty M, Prasad K, Pandit M, Tudu VK, Chakravarty MK, Moharana D (2020) Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports 10(1): 2944. https://doi.org/10.1038/s41598-020-59689-7.

Savy D, Brostaux Y, Cozzolino V, Delaplace P, Du Jardin P, Piccolo A (2020) Quantitative structure-activity relationship of humic-like biostimulants derived from agro-industrial byproducts and energy crops. Frontiers in Plant Science 11: 1–13. https://doi.org/10.3389/fpls.2020.00581.

Shahryari R, Khayatnezhad M, Moghanlou BS, Khaneghah AMP, Gholamin PR (2011) Response of maize genotypes to changes in chlorophyll content at presence of two types humic substances. Advances. Environmental. Biology 5: 154-156.

SIAP (2021) Servicio de Información Agroalimentaria y Pesquera. Anuario Estadístico de la Producción Agrícola. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). México. http://nube.siap.gob.mx/cierreagricola/. Fecha de consulta: 12 de febrero de 2021.

Song X, Chen M, Chen W, Huixin J, Xian Y (2020) Foliar application of humic acid decreased hazard of cadmium toxicity on the growth of Hybrid Pennisetum. Acta Physiologiae Plant 42: 129 https://doi.org/10.1007/s11738-020-03118-9.

Souza AC, Zandonadi DB, Santos MP, Canellas NOA, Soares CP, Irineu LES (2021) Aclimation with humic acids enhances maize and tomato tolerance to salinity. Chemical and Biological Technologies in Agriculture 8: 40. https://doi.org/10.1186/s40538-021-00239-2.

Swift RS (1996) Organic matter characterization. In: Methods of soil analysis Part 3—Chemical methods. American Society of Agronomy 5: 1011-1069. https://doi.org/10.2136/sssabookser5.3.c35.

Tiwari J, Ramanathan A L, Bauddh K, Korstad J (2023) Humic substances: Structure, function and benefits for agroecosystems a review. Pedosphere 33: 237-249. https://doi.org/10.1016/j.pedsph.2022.07.008.

Wang Y, Lu Y, Wang L, Song G, Ni L, Xu M, Nie C, Li B, Bai Y(2023) Analysis of the molecular composition of humic substances and their effects on physiological metabolism in maize based on untargeted metabolomics. Frontiers in Plant Science14:1122621.

Wulandari P, Sulistyaningsih E, Handayani S, Purwanto BH (2019) Growth and yield response of maize (Zea mays L.) on acid soil to different rates of humic acid and NPK fertilizer. Ilmu Pertanian (Agricultural Science) 4(2): 76-84. https://doi.org/10.22146/ipas.36680.

Yadav PK, Tripathi MK, Tiwari S, Chauhan S, Tripathi N, Sikarwar RS, Solanki RS, Sanjeev Y, Singh AK (2023) Genetic components and variability assessment for grain yield and its accrediting traits in maize (Zea mays L.). International Journal of Environment and Climate Change 13: 772-784. https://doi.org/10.9734/IJECC/2023/v13i92298.

Downloads

Published

2024-02-20

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Hernández-Campos, R., Robles, C., Calderín-García, A., Castañeda-Hidalgo, E., Muñiz-Becerá, S., & Perez-Alvares, S. (2024). Humic acids induce growth and protection against water stress in corn native to Mexico: Humic extracts against abiotic stress. Ecosistemas Y Recursos Agropecuarios, 11(1). https://doi.org/10.19136/era.a11n1.3947

Similar Articles

1-10 of 305

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)