Absence of Concordance between Polyembryony and Apomixis in Maize Confirmed through DNA Sequencing

Autores/as

  • Alondra Jacqueline Gutiérrez-López
  • José Espioza-Velázquez
  • Adriana Carolina Flores-Gallegos http://orcid.org/0000-0001-5092-1404
  • Alfonso López-Benitez
  • Norma Angélica Ruiz-Torres
  • Raúl Rodríguez-Herrera

DOI:

https://doi.org/10.19136/era.a6n18.2111

Resumen

Maize (Zea mays L.) polyembryony is a useful feature for genetic improvement of this specie, not only by its potential to generate multiple plants per seed, but also by its influence on increasing of fatty acids and amino acids content in the grain. It has been considered a possible association between apomixis and polyembryony in maize. With the objective to evidence the relation between apomixes and polyembryony, were used sequences of internal transcribed spacers (ITS), and intergenic spacers (IGS) and amplification of simple repeated sequences (SSR). The analyses were performed in 5 families derived from the IMM-UAAAN-BAP (“D”) maize population. Within each of the families were analysed the female parent plant, and two types of progenies (individual and polyembryonic). Nucleotide sequences and genotypic class were compared and also a molecular variation analysis was performed. In these analyses only a close but not identical relationship between polyembryonic plants was found. With the use of these techniques, it was demonstrated that reproduction of the maize plants is of a sexual type, and that based on the molecular markers used, no evidence was obtained about the probable relation- ship of a common genetic basis between polyembryony and apomixis. Sequencing of the ITS and IGS regions, and use of SSR microsatellites of different chromosomes, was a practical and economical tool for the assessment of similarity between genotypes.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Álvarez I,Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetic and Evolution 29: 417–434

Avendaño M, Espinoza J, Gutiérrez A, Flores A, Rodríguez R (2015) Secuencias nucleotídicas de la región ITS en familias S 1 y PL de maíces poliembriónicos. Revista Mexicana De Ciencias Agrícolas 6: 509–521

Batygina TB, Vinogradova GY (2007) Phenomenon of polyembryony. Genetic heterogeneity of seeds. Russian Journal of Developmental Biology 38: 126–151

Beck JB, Alexander PJ, Allphin L, Al-Shehbaz IA, Rushworth C, Bailey CD, et al. (2012) Does hybridization drive the transition to asexuality in diploid Boechera? Evolution 66: 985–995

Carels N, Bernardi G (2000) Two classes of genes in plants. Genetics 154: 1819–1825

Castro GME (1979) Estudio sobre herencias y valores nutritivos de semillas con doble embrión, Avances de investigación en maíz. Universidad Autónoma Agraria Antonio Narro, Buenavista. Coahuila, México, pp. 24-25.

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15

Eldenäs P, Anderberg AA, Källersjö M (1998) Molecular phylogenetics of the tribe Inuleae s. str. (Asteraceae), based on ITS sequences of nuclear ribosomal DNA. Plant System Evolution 210: 159–173

Erdelská O (1996) Polyembryony in maize: histological analysis. Acta Societatis Botanicorum Poloniae 65: 123–125

Espinoza JJ, Sánchez FR (2000) Triploides encontrados en maíces poliembriónicos. In: Zavala G., F., R. Ortega P., J. A. Mejía C., I. Benítez R., y H. Guillén A. (Eds). Memorias del XVIII Congreso Nacional de Fitogenética. Notas Científicas. Chapingo, México.

Espinoza J, Vega MC, Navarro E, Burciaga G (1998) Poliembrionía en maices de porte normal y enano. Agronomía Mesoamericana 9: 83–88

Espinoza Velázquez J, Valdés Reyna J, Alcalá Rodríguez JM (2012) Morfología y anatomía de radículas múltiples en plántulas de maíz derivadas de cariopsis con poliembrionía. Polibotánica 33: 207–221

González Vázquez V, Espinoza Velázquez J, Mendoza Villareal R, De León Castillo H, Torres Tapia MA (2011) Caracterización de germoplasma de maíz que combina un alto contenido de aceite y poliembrionía. Universidad y Ciencia - Trópico Húmedo 27 (2): 157–167

Hernández HR, Velázquez JE, Garduño DS, Zamora Villa VM (2011) Herencia de la poliembrionía en dos poblaciones experimetales de maíz. Revista Fitotecnia Mexicana 34: 27–33

Kato Yamakake TA, Mapes Sánchez C, Mera Obando LM, Serratos Hernández JA, Bye Boettler RA (2009) Origen y diversificación del maíz : una revisión analítica. Universidad Nacional Autónoma de México, Comisión para el Conocimiento y Uso de la Biodiversidad, México, D.F..

Kim HJ, Choi YK, Min B (2001) Variation of the Intergenic Spacer ( IGS ) Region of Ribosomal DNA among Fusarium oxysporum formae speciales. Journal of Microbiology 39: 265–272

Kirst M, Cordeiro CM, Rezende GDSP, Grattapaglia D (2005) Power of Microsatellite Markers for Fingerprinting and Parentage Analysis in Eucalyptus grandis Breeding Populations. Journal of. Heredity 96: 161–166

Kumar V, Malik SK, Pal D, Srinivasan R, Bhat SR (2014) Comparative transcriptome analysis of ovules reveals stress related genes associated with nucellar polyembryony in citrus. Tree Genetics and Genomes 10: 449–464

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. BMC Bioinformatics 25: 1451–1452

Lovell JT, Aliyu OM, Mau M, Schranz ME, Koch M, Kiefer C, et al. (2013) On the origin and evolution of apomixis in Boechera. Plant Reproduction 26: 309–315

Peter KVE (2009) Basics Of Horticulture. In Basics of Horticulture. New India Publishing Agency, pp. 57-59

Ramakrishnan M, Ceasar SA, Duraipandiyan V, Ignacimuthu S (2014) Efficient plant regeneration from shoot apex explants of maize (Zea mays) and analysis of genetic fidelity of regenerated plants by ISSR markers. Plant Cell Tissue and Organ Culture 119: 183–196

Rodríguez-Tovar A, Xoconostle-Cásarez B, Valdés M (2004) Ecología molecular de los hongos ectomicorrízicos. Revista Fitotecnia Mexicana 27: 267–278

Tudge C (2006) The Tree: A Natural History of What Trees Are, How They Live, and Why They Matter. Crown/Archetype.

Warburton ML, Xianchun X, Crossa J, Franco J, Melchinger AE, Frisch M, et al. (2002) Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Science 42: 1832–1840

Willson M, Burley N (1983) Mate Choice in Plants: Tactics, Mechanisms, and Consequences. SERBIULA (sistema Librum 2.0).

Zhou Y, Zou YP, Hong DY, Zhou J, Chen SY (1996) ITS1 Sequences of Nuclear Ribosomal DNA in Wild Rices and Cultivated Rices of China and Their Phylogenetic Implications. Acta Botanica Sinica 38: 785–791

Descargas

Publicado

2019-09-02

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Gutiérrez-López, A. J., Espioza-Velázquez, J., Flores-Gallegos, A. C., López-Benitez, A., Ruiz-Torres, N. A., & Rodríguez-Herrera, R. (2019). Absence of Concordance between Polyembryony and Apomixis in Maize Confirmed through DNA Sequencing. Ecosistemas Y Recursos Agropecuarios, 6(18). https://doi.org/10.19136/era.a6n18.2111

Artículos más leídos del mismo autor/a