Rizobacterias promotoras del crecimiento vegetal mejoran la germinación y los compuestos bioactivos en plántulas de pepino sometidas a estrés salino

Autores/as

DOI:

https://doi.org/10.19136/era.a12n2.4276

Palabras clave:

Cucumis sativus L., rhizobacterias, estrés salino

Resumen

La salinidad del suelo es un factor de estrés abiótico importante que impacta negativamente la productividad agrícola a nivel mundial. Una estrategia potencial para mitigar sus efectos es el uso de rizobacterias promotoras del crecimiento vegetal (PGPR). Este estudio evaluó el impacto de las PGPR (Pseudomonas paralactis, Bacillus cereus, Sinorhizobium meliloti y Acinetobacter radioresistens) en el crecimiento de plántulas de pepino (Cucumis sativus L.) bajo condiciones de estrés salino (0, 5, 10 y 15% de NaCl). Los resultados mostraron que el biocebado con PGPR mejoró significativamente las tasas de germinación, las longitudes de plúmula y radícula, y los pesos frescos y secos en comparación con los controles no inoculados. Específicamente, se observaron las tasas de germinación más altas con P. paralactis y A. radioresistens con 81.20% y 79.39%, respectivamente, bajo estrés salino. Además, la inoculación con PGPR incrementó el contenido de clorofila, la acumulación de prolina y la actividad antioxidante, lo que indica una mejora en la eficiencia fotosintética y el ajuste osmótico bajo condiciones salinas. Estos hallazgos sugieren que la inoculación con PGPR es una estrategia efectiva y sostenible para mitigar los efectos perjudiciales del estrés salino, mejorando el desarrollo de las plántulas de pepino. Con el fin de aumentar los beneficios de las PGPR, se están llevando a cabo evaluaciones adicionales utilizando consorcios bacterianos para maximizar los efectos individuales y mejorar aún más el crecimiento de las plantas bajo estas condiciones.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Pablo Preciado-Rangel, Instituto Tecnológico de Torreón

    Profesor-Investigador

    División de Estudios de Posgrado e Investigación

    Instituto Tecnologico de Torreón

Referencias

Abbas R, Rasul S, Aslam K, Baber M, Shahid M, Mubeen F, Naqqash T (2019) Halotolerant PGPR: A hope for cultivation of saline soils. Journal of King Saud University-Science 31(4): 1195-1201. https://doi.org/10.1016/j.jksus.2019.04.001

Aslam W, Noor RS, Hussain F, Ameen M, Ullah S, Chen H (2020) Evaluating morphological growth, yield, and postharvest fruit quality of cucumber (Cucumis sativus L.) grafted on cucurbitaceous rootstocks. Agriculture 10(4): 101. https://doi.org/10.3390/agriculture10040101

Bai Y, Zhou Y, Yue T, Huang Y, He C, Jiang W, Wang J (2023) Plant growth-promoting rhizobacteria Bacillus velezensis JB0319 promotes lettuce growth under salt stress by modulating plant physiology and changing the rhizosphere bacterial community. Environmental and Experimental Botany 213: 105451. https://doi.org/10.1016/j.envexpbot.2023.105451

Bartucca ML, Cerri M, Del-Buono D, Forni C (2022) Use of biostimulants as a new approach for the improvement of phytoremediation performance - A review. Plants 11: 1946. https://doi.org/10.3390/plants11151946

Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207. https://doi.org/10.1007/BF00018060

Cardarelli M, Woo SL, Rouphael Y, Colla G (2022) Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants 11(3): 259. https://doi.org/10.3390/plants11030259

El-Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance in plants. Frontiers in Plant Science 11: Article 7390974. https://doi.org/10.3389/fpls.2020.7390974

Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Nataraj K, Udayashankar AC, Sayyed RZ (2022) Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: a review. Antioxidants 11(9): 1763. https://doi.org/10.3390/antiox11091763

Gupta A, Rai S, Bano A, Sharma S, Kumar M, Binsuwaidan R, Pathak N (2022) ACC deaminase produced by PGPR mitigates the adverse effect of osmotic and salinity stresses in Pisum sativum through modulating the antioxidants activities. Plants 11(24): 3419. https://doi.org/10.3390/plants11243419

Ha-Tran DM, Nguyen TTM, Hung SH, Huang E, Huang CC (2021) Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. International Journal of Molecular Sciences 22(6): 3154. https://doi.org/10.3390/ijms22063154

Huerta-Reyes M, Tavera-Hernández R, Alvarado-Sansininea JJ, Jiménez-Estrada M (2022) Selected species of the Cucurbitaceae family used in Mexico for the treatment of diabetes mellitus. Molecules 27(11): 3440. https://doi.org/10.3390/molecules27113440

Ibrahim GA (2022) The role of salt-tolerant plant growth promoting bacteria in increasing the resistance of canola to salt-stress. Journal of Soil Sciences and Agricultural Engineering 13(4): 147-156. 10.21608/jssae.2022.128096.1068

Ilyas N, Mazhar R, Yasmin H, Khan W, Iqbal S, Enshasy HE, Dailin DJ (2020) Rhizobacteria isolated from saline soil induce systemic tolerance in wheat (Triticum aestivum L.) against salinity stress. Agronomy 10(7): 989. https://doi.org/10.3390/agronomy10070989

Kadam SK, Chandanshive VV, Watharkar AD, Vyavahare GD, Kadam AA, Perveen K, Pak JH (2024) Composting textile sludge using plant growth-promoting rhizobacteria in a solid-state bioreactor: A step towards zero discharge. International Journal of Environmental Science and Technology 21: 3329-3336. https://doi.org/10.1007/s13762-023-05193-0

Karnwal A (2020) Effect of halotolerant plant growth-promoting rhizobacteria from Bougainvillea glabra on wheat and maize seedlings under NaCl stress. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology 101(4): 349-359. https://doi.org/10.5114/bta.2020.100426

Kaur M, Sharma P (2022) Recent advances in cucumber (Cucumis sativus L.). The Journal of Horticultural Science and Biotechnology 97(1): 3-23. https://doi.org/10.1080/14620316.2021.1945956

Mouradi M, Farissi M, Khadraji A, Bouizgaren A, Qaddoury A, Ghoulam C (2023) Seed priming and nano priming techniques as tools to alleviate osmotic stress in legumes. In: Choukr-Allah R, Ragab R (eds) Biosaline agriculture as a climate change adaptation for food security. Springer, Cham. pp. 143-164. https://doi.org/10.1007/978-3-031-24279-3_7

Ojeda-Barrios D, Benavides-Mendoza A, Hernández-Rodríguez A, Orozco-Meléndez LR, Sanchez E (2021) Causes, effects, and management of salinity problems in pecan production in North Mexico. In: Taleisnik E, Lavado RS (eds) Saline and alkaline soils in Latin America. Natural Resources, Management and productive alternatives. Springer, Cham. pp. 177-187. https://doi.org/10.1007/978-3-030-52592-7

Patel P, Gajjar H, Joshi B, Krishnamurthy R, Amaresan N (2022) Inoculation of salt-tolerant Acinetobacter sp (RSC9) improves the sugarcane (Saccharum sp. hybrids) growth under salinity stress condition. Sugar Tech 24: 494-501. https://doi.org/10.1007/s12355-021-01043-w

Peng Y, Jiang L, Jeon D, Jeong JC, Kim Y, Kim CY, Lee JH, Lee J (2023) Mitigation of salt stress in plants by the salt-tolerant bacterium Pantoea ananatis JBR3-16 isolated from sand sedge (Carex pumila Thunb.). Plant Growth Regulation 101(2): 489-502. https://doi.org/10.1007/s10725-023-01036-7

Qi R, Lin W, Gong K, Han Z, Ma H, Zhang M, Zhang X (2021) Bacillus co-inoculation alleviated salt stress in seedlings cucumber. Agronomy 11(5): 966. https://doi.org/10.3390/agronomy11050966

Sabkia MH, Ongb PY, Ibrahimc N, Leea CT, Klemešd JJ, Lie C, Gaoe Y (2021) A review on abiotic stress tolerance and plant growth metabolite framework by plant growth-promoting bacteria for sustainable agriculture. Chemical Engineering Transactions 83: 367-372. https://doi.org/10.3303/CET2183062

Sapre S, Gontia-Mishra I, Tiwari S (2022) Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum). Journal of Plant Growth Regulation 41(2): 647-656. https://doi.org/10.1007/s00344-021-10329-y

Shao S, Tan SL, Li H (2016) Interactive effects of inoculated cucumber (Cucumis sativus L.) seedlings and saline soil. Communications in Soil Science and Plant Analysis 47(4): 457-469. https://doi.org/10.1080/00103624.2015.1123716

Shultana R, Zuan ATK, Naher UA, Islam AM, Rana MM, Rashid MH, Hasan AK (2022) The PGPR mechanisms of salt stress adaptation and plant growth promotion. Agronomy 12(10): 2266. https://doi.org/10.3390/agronomy12102266

Tirry N, Kouchou A, Laghmari G, Lemjereb M, Hnadi H, Amrani K, El-Ghachtouli N (2021) Improved salinity tolerance of Medicago sativa and soil enzyme activities by PGPR. Biocatalysis and Agricultural Biotechnology 31: 101914. https://doi.org/10.1016/j.bcab.2021.101914

Velasco-Jiménez A, Castellanos-Hernández O, Acevedo-Hernández G, Aarland-Rayn C, Rodríguez-Sahagún A (2020) Bacterias rizosféricas con beneficios potenciales en la agricultura. Terra Latinoamericana, 38(2): 333-345. https://doi.org/10.28940/terra.v38i2.470

Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E (2022) The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied Sciences 12(3): 1231. https://doi.org/10.3390/app12031231

Descargas

Publicado

2025-06-16

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Pérez-García, L. A. ., Sáenz-Mata, J. ., Palacio-Rodríguez, R. ., Rueda-Puente, E. O. ., Torres-Rodriguez, J. A. ., & Preciado-Rangel, P. (2025). Rizobacterias promotoras del crecimiento vegetal mejoran la germinación y los compuestos bioactivos en plántulas de pepino sometidas a estrés salino. Ecosistemas Y Recursos Agropecuarios, 12(2). https://doi.org/10.19136/era.a12n2.4276

Artículos más leídos del mismo autor/a

1 2 > >>