POTENTIAL DISTRIBUTION ZONES FOR SOYBEAN RUST (Phakopsora pachyrhizi) IN MEXICO

Autores/as

  • Ricardo Yañez-Lopez Universidad Autónoma de Querétaro
  • María Irene Hernández-Zul Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, s/n C.P. 76010, Querétaro, México
  • Juan Ángel Quijano-Carranza Campo Experimental Bajío (CEBAJ-INIFAP)
  • Antonio Palemón Terán-Vargas Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias
  • Luis Pérez-Moreno Universidad de Guanajuato
  • Gabriel Díaz-Padilla Campo Experimental Cotaxtla. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias
  • Enrique Rico-García Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, s/n C.P. 76010, Querétaro, México.

DOI:

https://doi.org/10.19136/era.a2n6.95

Palabras clave:

Phakopsora pachyrhizi, soybean, soybean rust, risk analysis

Resumen

Asian Soybean Rust is one of the most important soybean diseases. Since the past decade, some im- portant soybean production areas in America, like Brazil and the United States of America, have been affected by this disease. Due to the seriousness of this threaten, in 2009, the Mexican government implemented a surveillance program based on the installation and monitoring of sentinel plots in areas planted with crops considered as susceptible hosts for this organism. In order to support the strategy to prevent the establishment of the disease in Mexico, in the present study the potential distribution of the organism was evaluated considering the following criteria: 1) the suitability of climatic conditions for soybean rust; 2) the extent of the cultivated areas with susceptible hosts, and 3) the inoculums availability. Favorable days for Asian soybean rust infection were calculated with a simple model which uses climatic variables as inputs. The model was applied to classify the agricultural areas of the country according to the probability of occurrence of favorable conditions for infection of soybean rust in the summer and winter growing seasons. The Results indicate that in the summer the greatest number of favorable days for infection occurs, mainly in Tamaulipas, Veracruz, Yucatan, Chiapas, Oaxaca, Guerrero, Michoacan, Jalisco, Nayarit, Sinaloa and Sonora. In the winter, the favorable days decrease considerably. Based on these results we conclude that the probability that the Asian soybean rust would be overwintering in Mexico is low. 

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Ricardo Yañez-Lopez, Universidad Autónoma de Querétaro
    DEPARTAMENTO DE iNGENIERIA DE BIOSISTEMAS
  • Juan Ángel Quijano-Carranza, Campo Experimental Bajío (CEBAJ-INIFAP)

    Campo Experimental Bajío, (CEBAJ-INIFAP). Km 6.5 Carretera Celaya-San Miguel de Allende. Celaya, Guanajuato, México.

  • Antonio Palemón Terán-Vargas, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias

    Campo Experimental las Huastecas, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Carretera Tampico-Mante Km. 55, Villa Cuauhtémoc, Tamaulipas, México.

  • Luis Pérez-Moreno, Universidad de Guanajuato
    Universidad de Guanajuato, Instituto de Ciencias Agricolas, Apdo. Postal 311. Irapuato, Guanajuato, México.
  • Gabriel Díaz-Padilla, Campo Experimental Cotaxtla. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias

    Campo Experimental Cotaxtla. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. Km. 3.5 Carretera Xalapa-Veracruz. Colonia Ánimas. Xalapa, Veracruz. Mexico.

  • Enrique Rico-García, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, s/n C.P. 76010, Querétaro, México.
    Facultad de Ingeniería, Universidad Autónoma de Querétaro

Referencias

Batchelor WD, Yang XB, Tschanz AT (1997) Development of a neural network for soybean rust epidemics. Transactions of the American Society of Agricultural Engineers 40(1): 247-252.

Bonde MR, Berner DK, Nester SE, Frederick RD (2007) Effects of temperature on urediniospore germination, germ tube growth, and initiation of infection in soybean by Phakopsora isolates. Phytopathology 97(8): 997-1003.

Carcamo-Rodríguez A, Aguilar-Ríos J (2006) First report of Asian Soybeans Rust Caused by Phakopsora pachyrhizi from México. Plant Disease 90(9): 1260-1260.

Christiano RCS, Scherm H (2007) Quantitative aspects of the spread of Asian soybean rust in the southeastern United States, 2005 to 2006. Phytopathology 97(11): 1428-1433.

Del Ponte EM, Godoy CV, Canteri MG, Reis EM, Yang XB (2006) Models and applications for risk assessment and prediction of Asian soybean rust epidemics. Fitopatologia Brasileira 31(6):-533-544.

Del Ponte EM, Godoy CV, Li X, Yang XB (2006) Predicting severity of Asian soybean rust epidemics with empirical rainfall models. Phytopathology 96(7): 797-803.

Eccel E (2012) Estimating air humidity from temperature and precipitation measures for modeling applications. Meteorological Application 19(1): 118-128.

Gutierrez AP, Ponti L (2011) Assessing the invasive potential of the Mediterranean fruit fly in California and Italy. Biological Invasions 13(12): 2661–2676.

Hartman GL, Wang TC, Tschanz AT (1991) Soybean rust development and the quantitative relationship between rust severity and soybean yield. Plant Disease 75(6): 596-600.

IPM-PIPE (2012) Integrated Pest Management - Pest information for Extension and Education. http://sbr.ipmpipe.org/cgi-bin/sbr/public.cgi. Date of reference November 25, 2013.

Isard SA, Dufault NS, Miles MR, Hartman GL, Russo JM, De Wolf ED, Morel W (2006) The effect of solar irradiance on the mortality of Phakopsora pachyrhizi urediniospores. Plant Disease 90(7): 941-945.

Isard SA, Gage SH, Comtois P, Russo JM (2005) Principles of the Atmospheric Pathway for Invasive Species Applied to Soybean Rust. Bioscience 55(10): 851-861.

Kim KS, Wang TC, Yang XB (2005) Simulation of apparent infection rate to predict severity of soybean rust using a fuzzy logic system. Phytopathology 95(10): 1122-1131.

Kochman JK (1979) The effect of temperature on development of soybean rust (Phakopsora pachyrhizi). Australian Journal of Agricultural Research 30(2): 273-277.

Levy C (2005) Epidemiology and chemical control of soybean rust in Southern Africa. Plant Disease 89(6): 669-674.

Magarey RD, Sutton TB, Thayer CL (2005) A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95(1): 92-100.

Marchetti MA, Melching JS, Bromfield, K. R. (1976) The effects of temperature and dew period on germination and infection by uredospores of Phakopsora pachyrhizi. Phytopathology 66(4): 461-463.

Marchetti MA, Uecker FA, Bromfield KR (1975) Uredial development of Phakopsora pachyrhizi in soybean. Phytopathology 65(7): 822-823.

Melching JS, Dowler WM, Koogle DL, Royer MH (1989) Effects of duration, frequency, and temperature of leaf wetness periods on soybean rust. Plant Disease 73(2): 117-122.

Ortiz, SCA (1993) Elementos de Agrometeorología cuantitativa con aplicaciones en la República Mexicana. Chapingo, México, UACH. Departamento de Suelos.

Pan Z, Yang XB, Pivonia S, Xue L, Pasken R (2006) Long-term prediction of soybean rust entry into the continental United States. Plant Disease 90(7): 840-846.

Park S, Chen ZY, Chanda AK, Schneider RW, Hollier CA (2008) Viability of Phakopsora pachyrhizi urediniospores under simulated southern Louisiana winter temperature conditions. Plant Disease 92(10): 1456-1462.

Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE,

Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1(1): 3–19.

Pivonia S, Yang XB (2004) Assessment of the potential year-round establishment of soybean rust throughout the world. Plant Disease 88(5): 523-529.

Pivonia S, Yang XB, Pan Z (2005) Assessment of epidemic potential of soybean rust in the United States. Plant Disease 89(6): 678-682.

Pivonia S,Yang XB (2006) Relating epidemic progress from a general disease model to seasonal appearance time of rusts in the United States: Implications for soybean rust. Phytopathology 96(4): 400-407.

Quijano CJA, Rocha RR, Aguirre GJA (2011) Sistema de Información para el Monitoreo del Potencial Ecologico de los Cultivos, SIMPEC. Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias. (Publicación Técnica Núm. 2).

Reis EM, Sartori AF, Camara RK (2004) Modelo climático para a previsão da ferrugem da soja. Summa Phytopathologica 30(2): 290-292.

Ritchie JT, 1998. Soil water balance and plant water stress. In Understanding options of agriculturalproduction, eds. G.Y.

Tsuji, G. Hoogenboom, and P.K. Thornton. Dordrecht, The Netherlands: Kluwer Academic Publishers and International Consortium for Agricultural Systems Applications. 41-53.

Rossi RL (2003) First report of Phakopsora pachyrhizi, the causal organism of soybean rust in the Province of Misiones, Argentina. Plant Disease 87(1):102.

SCOPE (2012) Sistema Coordinado de Operaciones para el manejo de Plagas Reglamentadas y su Epidemiología. https://scopepublico.zedxinc.com/cgi-bin/index.cgi. Date of reference November 13, 2013.

SENASICA (2012) Ficha Técnica Phakopsora pachyrizi Sydow & Sydow Roya asiática de la soya. http://www.senasica.gob.mx/includes/asp/download.asp?IdDocumento=19732&IdUrl=32204. Date of reference November 2, 2013.

Sharma SK, Gupta GK (2006) Current status of soybean rust (Phakopsora pachyrhizi) – A Review. Agriculture Reviews 27(2): 91-102.

SIAP (2011) Servicio de Información Agroalimentaria y Pesquera Secretaría de Agricultura. Sistema de Producción agrícola. http://www.siap.gob.mx/index.php?option=com_wrapper&view=wrapper&Itemid=351. Date of reference January 13, 2013.

Slaminko TL, Miles MR, Frederick RD, Bonde MR, Hartman GL (2008) New legume hosts of Phakopsora pachyrhizi based on greenhouse evaluations. Plant Disease 92(5): 767-771.

Yang XB, Dowler WM, Tschanz AT (1991) A simulation model for assessing soybean rust epidemics. Journal of Phytopathology 133(3): 187-200.

Yang XB, Dowler WM, Tschanz AT, Wang TC (1992) Comparing the effects of rust on plot yield, plant yield, yield components, and vegetative parts of soybean. Journal of Phytopathology 136(1): 45-56.

Yáñez-Morales MJ, Alaniz-Martínez I, Soto-Rocha JM, Malvick DK, Kurle JE, Floyd CM, Kupra V (2009) Soybean rust caused by Phakopsora pachyrhizi detected in the estate of Campeche on the Yucatan peninsula, Mexico. Plant Disease 93(8): 847.

Publicado

2015-06-10

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Yañez-Lopez, R., Hernández-Zul, M. I., Quijano-Carranza, J. Ángel, Terán-Vargas, A. P., Pérez-Moreno, L., Díaz-Padilla, G., & Rico-García, E. (2015). POTENTIAL DISTRIBUTION ZONES FOR SOYBEAN RUST (Phakopsora pachyrhizi) IN MEXICO. Ecosistemas Y Recursos Agropecuarios, 2(6), 291-302. https://doi.org/10.19136/era.a2n6.95

Artículos similares

21-30 de 310

También puede Iniciar una búsqueda de similitud avanzada para este artículo.