¿Son los pigmentos fotosintéticos buenos indicadores de la relación del nitrógeno, fósforo y potasio en frijol ejotero?

Authors

  • Esteban Sánchez Chávez Centro de Investigación en Alimentación y Desarrollo
  • Juan Mauel Ruiz Universidad de Granada
  • Luis Romero Universidad de Granada
  • Pablo Preciado-Rangel Instituto Tecnológico de Torreón
  • María Antonia Flores-Córdova Universidad Autónoma de Chihuahua
  • César Márquez-Quiroz Universidad Juárez Autónoma de Tabasco

DOI:

https://doi.org/10.19136/era.a5n15.1757

Abstract

El objetivo fue conocer si los pigmentos foliares son buenos indicadores del estado nutricional del N, P y K en plantas de frijol ejotero. Se realizaron tres estudios independientes,en el primero, el N se aplicóa la solución nutritiva en la forma de NH4NO3en dosis crecientes de 0 a 24.0 mM de N. En el segundo experimento, el P se aplicó en la forma H3PO4en dosis crecientes de 0 a 8.0 mM de P, y en el tercer experimento, el K se aplicó en la forma KSO4en dosis crecientes de 0 a 16.0 mM de K. Los parámetros analizados en tejido foliar fueron: concentración de N, P y K, biomasa, concentración de pigmentos foliares y sus relaciones. Los resultados indican que la aplicación de N favoreció la acumulación de clorofila a, b y carotenos, presentándose la máxima concentración en la dosis de 18 mM, de la misma manera la aplicación de P favoreció la acumulación de pigmentos, presentando la dosis de 4.0 mM, la mayor acumulación; mientras que la aplicación de K presentó un comportamiento inverso al N y P, presentando la mayor acumulación de pigmentos en la dosis de 1.0 mM. La concentración de clorofila a y b, y clorofila total tuvo correlación positiva y significativa con el estado nutricional del N. Los modelos matemáticos polinomial pudieran ser un instrumento para la toma de decisiones para el manejo nutricional sustentable de la fertilización de N, P y K. 

Downloads

Download data is not yet available.

Author Biographies

  • Esteban Sánchez Chávez, Centro de Investigación en Alimentación y Desarrollo
    Coordinación Académica Delicias
  • Juan Mauel Ruiz, Universidad de Granada
    Dpto. Fisiología Vegetal
  • Luis Romero, Universidad de Granada
    Dpto. Fisiología Vegetal
  • Pablo Preciado-Rangel, Instituto Tecnológico de Torreón
    Suelos
  • María Antonia Flores-Córdova, Universidad Autónoma de Chihuahua
    Facultad de Ciencias Agrotecnológicas
  • César Márquez-Quiroz, Universidad Juárez Autónoma de Tabasco
    Agricultura Tropical

References

Balasubramanian V, Morales AC, Cruz RT, Thiyagarajan TM, Nagarajan R, Babu M, Abdulrachman S, Hai LH (2000) Adaptation of the chlorophyll meter (SPAD) technology for real-time N management in rice: a review. International Rice Research Institute 5: 25–26.

Bojovic B, Stojanovic J (2005) Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition. Archives of Biological Sciences 57: 283-290.

Bustos F, González M, Donoso, Gerding V, Donoso C, Escobar B (2008) Efecto de distintas dosis de fertilización de liberación controlada (Osmocote®) en el desarrollo de plantas de coigüe, raulí y ulmo. Revista Bosque 29: 155-161.

Calatayud A, Barreno E (2004) Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiology and Biochemistry 42: 549-555.

Chova MM, Peña F, Campillo García CD, Delgado García A, Díaz MÁ (2000) Efecto de la corrección de la clorisis férrica en olivar con fosfato de hierro en los parámetros de calidad del aceite de oliva virgen. Edafología: Revista de la Sociedad Española de la Ciencia del Suelo 7: 9-15.

Daughtry CST, Walthall CI, Kim MS, Brown de Colstoun E, McMurtrey JE (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74: 229-239.

Demotes-Mainard S, Boumaza R, Meyer S, Cerovic ZG (2008) Indicators of nitrogen status for ornamental woody plants based on optical measurements of leaf epidermal polyphenol and chlorophyll contents. Scientia Horticulturae 115: 377–385.

Grossman A, Takahashi H (2001). Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annual Review of Plant Physiology and Plant Molecular Biology 52: 163–210.

Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA (2011) A holistic view of nitrogen acquisition in plants. Journal of Experimental Botany 62: 1455-1466.

Kumar Tewari R, Kumar P, Sharma N (2007) Oxidative stress and antioxidant responses in Young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. Journal of Integrative Plant Biology 49: 313-322.

Lamrani Z, Belakbir A, Ruiz JM, Ragala L, López-Cantarero I, Romero L (1996) Influence of nitrogen, phosphorus, and potassium on pigment concentration in cucumber leaves. Communications in Soil Science and Plant Analysis 27: 1001-1012.

Latsague M, Sáez P, Mora M. 2014. Efecto de la fertilización con nitrógeno, fósforo y potasio, sobre el contenido foliar de carbohidratos, proteínas y pigmentos fotosintéticos en plantas de Berberidopsis corallina Hookf. Gayana Botánica 71: 37-42.

Ling, N., Chen, D., Guo, H., Wei, J., Bai, Y., Shen, Q., & Hu, S. (2017). Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe. Geoderma 292: 25-33.

López-Cantarero I, Lorente FA, Romero L (1994) Are chlorophills good indicator of nitrogen and phosphorus levels? Journal of Plant Nutrition 17: 979-990.

Marschner H (1995) Mineral nutrition of higher plants. Second Edition. Academic Press Inc., San Diego CA. pp 245-281.

Masoudi-Sadaghiani F, Babak AM, Zardoshti MR, Hassan RSM, Tavakoli A (2011) Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Australian Journal of Crop Science 5: 55-60.

Muñoz-Huerta RF, Guevara-Gonzalez RG, Contreras-Medina LM, Torres-Pacheco I, Prado-Olivarez J, Ocampo-Velazquez RV (2013) A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13: 10823-10843.

Naeem, M., & Khan, M. M. A. (2009). Phosphorus ameliorates crop productivity, photosynthesis, nitrate reductase activity and nutrient accumulation in coffee senna (Senna occidentalis L.) under phosphorus-deficient soil. Journal of Plant Interactions 4: 145-153.

Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and future directions. Annals Applied Biology 147: 211-226.

Raghothama KG, Karthikeyan AS 2005 Phosphate acquisition. Plant and Soil 274: 37–49.

Rubio G, Lynch JP (2007): Compensation among root classes of Phaseolus vulgaris L. Plant and Soil 290: 307–321.

Salinas R, Sánchez E, Ruíz JM, Lao MT, Romero L (2012) Producción de biomasa y rendimiento en judía verde (Phaseolus vulgaris L.) cv. Strike en respuesta a la fertilización fosforada. Phyton, International Journal of Experimental Botany 81:35-39.

Sánchez E, Ávila-Quezada G, Gardea AA, Muñoz E, Ruiz JM, Romero L (2009) Nitrogen metabolism in roots and leaves of green bean plants exposed to different phosphorus doses. Phyton, International Journal of Experimental Botany 78: 11–16.

SAS Institute Inc. (2007). SAS/STAT User’s Guide, Version 9.2. SAS Institute Inc., Cary, NC, USA. pp: 1028-1056.

Schwambach J, Fadanelli CF, Fett-Neto AG (2005) Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus. Tree Physiology 25: 487-494.

Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54: 733-749.

Tejada-Zarco PJ, Miller JR, Morales A, Berjon A, Aguera J (2004) Hyperspectral indices and simulation models for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment 90: 463-476.

Torres Neto A, Campostrini E, Goncalves de Oliveira J, Bressan-Smith RE (2005) Photosynthetic pigments, nitrogen, chlorophyll a flurorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae 104: 199-209.

Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157: 423–447.

Wellburn AR (1994) The special determination of chlorophylls a and b as well as total carotenoids using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144: 307-313.

Xu HX, Weng XY, Yang Y (2007) Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Russian Journal of Plant Physiology 54: 741–748.

Yaryura P, Cordon G, León M, Kerber N, Pucheu N, Rubio G, García A, Lagorio MG (2009) Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.). Journal of Agronomy and Crop Science 195: 186-196.

Zhang X, Huang G, Bian X, Zhao Q (2013) Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Plant Soil Environ, 59: 80-88.

Published

2018-09-03

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Chávez, E. S., Ruiz, J. M., Romero, L., Preciado-Rangel, P., Flores-Córdova, M. A., & Márquez-Quiroz, C. (2018). ¿Son los pigmentos fotosintéticos buenos indicadores de la relación del nitrógeno, fósforo y potasio en frijol ejotero?. Ecosistemas Y Recursos Agropecuarios, 5(15), 387-398. https://doi.org/10.19136/era.a5n15.1757

Most read articles by the same author(s)

1 2 > >>