Influence of biofortification with chitosan-iodine complexes on the phytochemical quality of jalapeño pepper fruits

Authors

  • Dora Ma. Sangerman-Jarquín Campo Experimental Valle de México-INIFAP
  • Oscar Sariñana-Aldaco CONAHCYT-Universidad Autónoma Agraria Antonio Narro
  • Eduardo A. Lara-Reimers Universidad Autónoma Agraria Antonio Narro
  • Hortensia Ortega-Ortíz
  • Selene Y. Márquez-Guerrero Tecnológico Nacional de México / Instituto Tecnológico de Torreón.
  • Pablo Preciado- Ramgel Tecnológico Nacional de México / Instituto Tecnológico de Torreón.

DOI:

https://doi.org/10.19136/era.a10n3.3891

Keywords:

Antioxidants, biostimulation, biopolymers, trace element

Abstract

The use of chitosan-iodine (Cs-I) complexes can be a good strategy to improve the nutraceutical quality and the concentration of I in the edible part of crops. The objective of this study was to evaluate the effects of biofortification via foliar of I in a complex with Cs on the nutraceutical quality of jalapeño pepper fruits. The treatments were the following: absolute control, 1% Cs and I complex (5, 10, 15, 15, 20, and 25 mg L–1) + 1% Cs. The application of the 15 mg L–1 complex of Cs-I improved the nutraceutical quality of the fruits, in contrast to the application of 1% Cs individually. In addition, as the dose of the Cs-I complex increases, the accumulation of I in the fruit increases. The use of the Cs-I complex is an alternative to modulate the nutraceutical quality and I content in jalapeño pepper fruits.

Downloads

Download data is not yet available.

Author Biography

  • Pablo Preciado- Ramgel, Tecnológico Nacional de México / Instituto Tecnológico de Torreón.

    Profesor-Investigador

    División de Estudios de Posgrado e Investigación

    Instituto Tecnologico de Torreón

References

Ao Z, Huang Z, Liu H (2022) Spicy food and chili peppers and multiple health outcomes: Umbrella review. Molecular Nutrition & Food Research 66: 2200167. DOI: 10.1002/MNFR.202200167.

Aparo NO, Olum S, Atimango AO, Odongo W, Aloka B, Ongeng D, et al. (2023) Farmers' intention to adopt agronomic biofortification: The case of iodine biofortified vegetables in Uganda. Horticulturae 9: 401. DOI: 10.3390/horticulturae9030401.

Bahmani R, Razavi F, Mortazavi SN, Gohari G, Juarez-Maldonado, A (2022) Evaluation of proline-Coated chitosan nanoparticles on decay control and quality preservation of strawberry fruit (cv. Camarosa) during cold storage. Horticulturae 8: 648. DOI: 10.3390/horticulturae8070648.

Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28: 25-30. DOI: 10.1016/S0023-6438(95)80008-5.

Chirkov SN (2002) The antiviral activity of chitosan. Applied Biochemistry and Microbiology 38: 1-8.

Cisneros-Pineda O, Torres-Tapia LW, Gutiérrez-Pacheco LC, Contreras-Martín F, González-Estrada T, Peraza-Sánchez SR (2007) Capsaicinoids quantification in chili peppers cultivated in the state of Yucatan, Mexico. Food Chemistry 104: 1755-1760. DOI: 10.1016/j.foodchem.2006.10.076.

Consentino BB, Rouphael Y, Ntatsi G, De Pasquale C, Iapichino G, D'anna F, et al. (2022) Agronomic performance and fruit quality in greenhouse-grown eggplant are interactively modulated by iodine dosage and grafting. Scientia Horticulturae 295: 110891. DOI: 10.1016/j.scienta.2022.110891.

Dávila-Rangel IE, Trejo-Téllez LI, Ortega-Ortíz H, Juárez-Maldonado A, González-Morales S, Companioni-González B, et al. (2020) Comparison of iodide, iodate, and iodine-chitosan complexes for the biofortification of lettuce. Applied Sciences 10: 2378. DOI: 10.3390/app10072378.

Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG (2021) Progresses in chitin, Chitosan, starch, cellulose, pectin, alginate, gelatin, and gum based (nano) catalysts for the heck coupling reactions: A review. International Journal of Biological Macromolecules 192: 771-819. DOI: 10.1016/j.ijbiomac.2021.09.162.

Duborská E, Šebesta M, Matulová M, Zvěřina O, Urík M (2022) Current strategies for selenium and iodine biofortification in crop Plants. Nutrients 14: 4717. DOI: 10.3390/nu14224717.

El Amerany F, Rhazi M, Balck G, Wahbi S, Meddich A, Taourirte M, et al. (2022) The effect of chitosan on plant physiology, wound response, and fruit quality of tomato. Polymers 14: 5006. DOI: 10.3390/polym14225006.

García Fuentes JE, Herrera Castellanos BF, Rivas Martínez EN, Narváez Ortiz WA, Benavides Mendoza A, Medrano Macías J (2022) Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress. Folia Horticulturae 34: 27-37. DOI: 10.2478/fhort-2022-0003.

Germ M, Kacjan-Maršić N, Kroflič A, Jerše A, Stibilj V, Golob A (2020) Significant accumulation of iodine and selenium in chicory (Cichorium intybus L. var. foliosum Hegi) leaves after foliar spraying. Plants 9: 1766. DOI: 10.3390/plants9121766.

Golubkina N, Moldovan A, Kekina H, Kharchenko V, Sekara A, Vasileva V, et al. (2021) Joint biofortification of plants with selenium and iodine: New field of discoveries. Plants 10: 1352. DOI: 10.3390/plants10071352.

Gonzali S, Kiferle C, Perata P (2017) Iodine biofortification of crops: agronomic biofortification, metabolic engineering, and iodine bioavailability. Current Opinion in Biotechnology 44: 16-26. DOI: 10.1016/j.copbio.2016.10.004.

Hatch-Mcchesney A, Lieberman HR (2022) Iodine and iodine deficiency: A comprehensive review of a re-emerging issue. Nutrients 14: 3474. DOI: 10.3390/nu14173474.

Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A (2019) Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25: 313-326. DOI: 10.1007/s12298-018-0633-1.

Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S (2017) Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook. Bioresource Technology 242: 295-303. DOI: 10.1016/j.biortech.2017.03.119.

Krzepiłko A, Kościk B, Skowrońska M, Kuśmierz S, Walczak J, Prażak R (2023) Quality of rye plants (Secale cereale) as affected by agronomic biofortification with iodine. Plants 12: 100. DOI: 10.3390/plants12010100.

Lamaison JLC, Carnet A (1990) Contents in main flavonoid compounds of Crataegus monogyna Jacq. and Crataegus laevigata (Poiret) DC flowers at different development stages. Pharmaceutica Acta Helvetica 65: 315-320.

Lawson PG, Daum D, Czauderna R, Meuser H, Härtling JW (2015) Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Frontiers in Plant Science 6: 450. DOI: 10.3389/fpls.2015.00450.

Lee SY (2021) Editorial: Consequences of iodine deficiency in pregnancy. Frontiers in Endocrinology 12: 936. DOI: 10.3389/fendo.2021.740239.

Mageshen VR, Santhy P, Meena S, Latha MR, Senthil A, Saraswathi T, et al. (2022) Influence of potassium iodate and chitosan iodate complex on growth, yield, quality, and iodine uptake in 'shivam' hybrid of tomato (Solanum lycopersicum L.). Journal of Applied and Natural Science 14: 784-795. DOI: 10.31018/jans.v14I3.3583.

Mageshen VR, Santhy P (2023) Effect of chitosan iodate complex biofortification on nutrient uptake in ‘shivam’hybrid of tomato (Solanum lycopersicum L.). Journal of Applied and Natural Science 15: 549-554. DOI: 10.31018/jans.v15i2.4461.

Medrano-Macías J, Leija-Martínez P, González-Morales S, Juárez-Maldonado A, Benavides-Mendoza A (2016) Use of iodine to biofortify and promote growth and stress tolerance in crops. Frontiers in Plant Science 7: 1146. DOI: 10.3389/fpls.2016.01146.

Medrano Macías J, López Caltzontzit MG, Rivas Martínez EN, Narváez Ortiz WA, Benavides Mendoza A, Martinez Lagunes P (2021) Enhancement to salt stress tolerance in strawberry plants by iodine products application. Agronomy 11: 602. DOI: 10.3390/agronomy11030602.

Mégier C, Dumery G, Luton D (2023) Maternal and fetal iodine and thyroid metabolism during pregnancy. Metabolites 13: 633. DOI: 10.3390/metabo13050633.

Padayatt SJ, Daruwala R, Wang Y, Eck PK, Song J, Koh WS, et al. (2001) Vitamin C: from molecular actions to optimum intake. In E. Cadenas and L. Pack (Eds.), Handbook of Antioxidants. (oxidative stress and disease) CRC, Marcel Dekker, Inc., New York Taylor & Francis pp. 117-145.

Ramírez-Gottfried VB, Fortis-Hernández M, González-Avalos R, Preciado-Rangel P (2023) Iodine application in Vitis vinifera L. cv. 'Cabernet Sauvignon' improve bioactive compounds and enzymatic activity in berries. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 51: 13074. DOI: 10.15835/nbha51113074.

Riyazuddin R, Singh K, Iqbal N, Nisha N, Rani A, Kumar M, et al. (2023) Iodine: an emerging biostimulant of growth and stress responses in plants. Plant and Soil 486: 119-133. DOI: 10.1007/S11104-022-05750-5.

SAS (2004). Statistical Analysis Software, SAS/STAT, SAS. https://www.sas.com/en_us/software/stat.htm.

Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299: 152-178. DOI: 10.1016/S0076-6879(99)99017-1.

Steiner AA (1961) A universal method for preparing nutrient solutions of a certain desired composition. Plant and soil 15: 134-154. DOI: 10.1007/BF01347224.

Zaremba A, Gramza-Michalowska A, Pal K, Szymandera-Buszka K (2023) The effect of a vegan diet on the coverage of the recommended dietary allowance (RDA) for iodine among people from Poland. Nutrients 15: 1163. DOI: 10.3390/nu15051163.

Zhang Y, Cao H, Wang M, Zou Z, Zhou P, Wang X, et al. (2023) A review of iodine in plants with biofortification: Uptake, accumulation, transportation, function, and toxicity. Science of The Total Environment 878: 163203. DOI: 10.1016/j.scitotenv.2023.163203.

Downloads

Published

2023-11-07

Issue

Section

SCIENTIFIC NOTE

How to Cite

Sangerman-Jarquín, D. M., Sariñana-Aldaco, O., Lara-Reimers, E. A., Ortega-Ortíz, H., Márquez-Guerrero, S. Y., & Preciado- Ramgel, P. (2023). Influence of biofortification with chitosan-iodine complexes on the phytochemical quality of jalapeño pepper fruits. Ecosistemas Y Recursos Agropecuarios, 10(3). https://doi.org/10.19136/era.a10n3.3891

Similar Articles

1-10 of 40

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)