Root characterization of citrus rootstocks grown in containers
DOI:
https://doi.org/10.19136/era.a11nIV.4045Keywords:
Biomass, plant quality, spatial distribution, root systemAbstract
The objective was to evaluate the root characteristics of citrus rootstocks grown in tubes with different substrates. Planting and development of the plants was carried out in Cazones, Veracruz, Mexico, and the evaluation was carried out at the Fruit Growing Laboratory, Colegio de Postgraduados, Montecillo, State of Mexico. The rootstocks were sour orange, Citrange C-35, Rangpur lime and Volkamerian lemon, transplanted in 1 L tubes filled with sand, peat-agrolite (4:1 v/v) and vega-tepojal soil (3:1 v/v). The experimental design was a randomized complete block factorial arrangement, with four repetitions of five experimental units. Six months after establishment, three repetitions of four plants per treatment were selected, and the following were evaluated: plant height, neck diameter, weight of fresh and dry root matter, number of roots per order and root length. The data were analyzed with the statistical package SAS, an ANOVA and Tukey's comparison of means were determined (p ≤ 0.05). The variable number of roots was subjected to polynomial regression analysis. Vega-tepojal soil gave quality to aerial and radical development, being an alternative for the development of plants in the nursery, Volkamerian lemon showed greater total root length, and second, third, fourth and fifth order roots were found in all rootstocks. In the container the roots developed up to the wall, then they went to the base, where there was natural pruning. The substrate and container influenced the development and shape of the root in the four rootstocks.
Downloads
References
Allen KS, Harper RW, Bayer A, Brazee NJ (2017) A review of nursery production systems and their influence on urban tree survival. Urban For Urban Green 21: 183-191. https://doi.org/ 10.1016/J.UFUG.2016.12.002.
Barrera-Ramírez R, Vargas-Hernández JJ, López-Aguillón R, Muñoz-Flores HJ, Treviño-Garza EJ, Aguirre-Calderon OA (2021) Impac of external and internal factors on successful grafting of Pinus pseudostrobus var. oaxacana (Mirov) Harrison. Revista Chapingo Serie Ciencias Forestales y del Ambiente 27: 243-256. https://doi.org/10.5154/r.rchscfa.2020.05.037.
Bontpart T, Concha C, Gluffrida MV, Robertson I, Admkie K, Degefu T, Girma N, Tesfaye K, Halleselassie T, Fikre A, Fetene M, Tsaftaris SA, Doerner P (2020) Affordable and robust phenotyping framework to analyse root system architecture of soil-grown plants. The Plant Journal 103: 2330-2343. https://doi.org/10.1111/tpj.14877
Budiarto R, Poerwanto R, Santosa E Efendi D (2019) A review of root pruning to regulate citrus growth. Journal of Tropical Crop Science 6: 1-7.
Castro-Garibay SL, Aldrete A, López-Upton J, Ordáz-Chaparro VM (2018) Efecto del envase, sustrato y fertilización en el crecimiento de Pinus greggii var. australis en vivero. Agrociencia 52:115-127.
Cruz AM, Uilian CD, Santiago CD, Colombo RC, de Andrade PC, Hissano TZ, Vieira FNCS (2019) Initial shoot development and root architecture of citrus rootstocks. Semina: Ciências Agrárias 40: 1393-1404. https://doi.org/10.5433/1679-0359.2019v40n4p1393
Elsysy M, Einhorn TC (2022) Air-pruning con- tainers modify root and scion growth and alter resource allocation of bench-grafted apple plants. Horticulturae 8: 797. https://doi.org/ 10.3390/horticulturae8090797.
Giehl RF, von-Wiren N (2014) Root nutrient foraging. Plant Physiology 166: 509-517. https://doi.org/10.1104/pp.114.245225
Grossnickle SC, El-Kassaby YA (2015) Bareroot versus container stock types: A performance comparison. New Forests 47: v1-51. https://doi. org/10.1007/S11056-015-9476-6.
Hankin S, Watson G (2020) Oak taproot growth disruption differentially impacts root architecture during nursery production. Forests 11(8): 798. https://doi.org/10.3390/f11080798
Hildebrant T (2017) Conifer propagation. American Conifer Society. https://conifersociety.org/conifers/articles/conifer-propagation-101/. Fecha de consulta: 10 de enero de 2024.
INEGI (2023) Compendio de información geográfica municipal de los Estados Unidos Mexicanos. Coordinación de Desarrollo de Proyectos. Subdirección de Actualización de Marco Geoestadístico. Instituto Nacional de Estadística y Geografía. Dirección General de Geografía. www.inegi.gob.mx/prod_serv/..espanol/bvinegi/.../2005/agenda2005.pdf. Fecha de consulta: 25 de enero de 2024.
Kita K, Kon H, Ishizuka W, Agathokleous E, Kuromaru M (2018) Survival rate and shoot growth of grafted Dahurian larch (Larix gmelinii var. japonica): A comparison between Japanese larch (L. kaempferi) and F1 hybrid larch (L. gmelinii var. japonica × L. kaempferi) rootstocks. Silvae Genetic 67: 111-116. https://doi. org/10.2478/sg-2018-0016.
López AED, López LMA, Ramírez HC, Aguilera RM (2023) Efecto del riego, la fertilización y el contenedoren la respuesta a la injertación de plántulas de Pinus patula Schltdl. & Cham. Revista Mexicana de Ciencias Forestales 14: 119-142.
Luo H, Hu H, Chu C, He F, Fang S (2020) High temperature can change root system architecture and intensify root interactions of plant seedlings. Frontiers in Plant Science 11: 160-173. https://doi. org/10.3389/fpls.2020.00160
Lynch JP, Strock CF, Schneider HM, Sidhu JS, Ajmera I, Galindo-Casta~neda T, Klein SP, Han- lon MT (2021) Root anatomy and soil resource capture. Plant Soil 466: 21-63. https://doi. org/10.1007/s11104-021-05010-y.
Mariotti B, Maltoni A, Jacobs DF, Tani A (2015) Container effects on growth and biomass allo- cation in Quercus robur and Juglans regia seedlings. Scandinavian Journal of Forest Research 30: 401-415. https://doi.org/10.1080/02827581.2015. 1023352.
Meneses NT, Coelho FMA, Santos FHP, dos Santos deALL, Gesteira daSA, Soares Fdos SW (2020) Rootstocks and planting types on root architecture and vegetative vigor of "Pera" sweet orange trees. Revista Brasileira de Engenharia Agrícola e Ambiental 24: 685-693. http://dx.doi.org/10.1590/1807-1929/agriambi.v24n10p685-693
Montagnoli A, Dumroese RK, Negri G, Scippa GS, Chiatante D, Terzaghi M (2022) Asymmetrical copper root pruning may improve root traits for reforesting steep and/or windy sites. New Forests 53:1093-1112. https://doi.org/10. 1007/s11056-022-09913-1.
Ötvös K, Marconi M, Vega A, O´Brien J, Johnson A, Abualia R, Antonelli L, Montesinos JC, Zhang Y, Tan S, Cuesta C, Arthner C, Bouguyon E, Gojon A, Frimi J, Gutiérrez RA, Wabnik K, Benková E (2021) Modulation of plant rot growth by nitrogen source-defined regulation of polar aux transport. The EMBO Journal 40: 1-21. https://doi.org/10.15252/embj.2020106862
Pokhrel A, Albrecht U (2024) Evaluation of different container types on root structure and performance of nursery-grown citrus plants. HortScience 59: 1056-1064. https://doi.org/10.21273/HORTSCI17979-24
Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees 21: 385-402.
Rune G (2003) Slits in container wall improve root structure and stem straightness of out planted Scots pine seedlings. Silva Fennica 37: 333-342.
Ryan PR, Delhaize E, Watt M, Richardson AE (2016) Plant roots: understanding structure and function in an ocean of complexity. Annals of Botany 118: 555-559. https://doi.org/10.1093/aob/mcw192
SAS (2009) SAS/STAT® 9.3 User’s Guide. SAS Institute. Cary, North Carolina. USA. 8621p.
Souad El-M, Amraoui MB (2020) Effect of properties on Growth of Quercus ilex L. in humid and cold mountains of Morocco. Applied and Environmental Soil Science 1: 1-9. https://doi.org/10.1155/2020/8869975
Vashisth T, Chun C, Hampton MO (2020) Florida citrus nursery trends and strategies to enhance production of field-transplant ready citrus plants. Horticulturae 6: 1-8. https://doi.org/10.3390/ HORTICULTURAE6010008.
Watson G, Hewitt A (2020) Changes in tree root architecture resulting from field nursery production practices. Journal of Environmental Horticulture 38: 22-28. https://doi.org/10.24266/0738-2898-38.1.22
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ecosistemas y Recursos Agropecuarios

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).