Root characterization of citrus rootstocks grown in containers

Authors

DOI:

https://doi.org/10.19136/era.a11nIV.4045

Keywords:

Biomass, plant quality, spatial distribution, root system

Abstract

The objective was to evaluate the root characteristics of citrus rootstocks grown in tubes with different substrates. Planting and development of the plants was carried out in Cazones, Veracruz, Mexico, and the evaluation was carried out at the Fruit Growing Laboratory, Colegio de Postgraduados, Montecillo, State of Mexico. The rootstocks were sour orange, Citrange C-35, Rangpur lime and Volkamerian lemon, transplanted in 1 L tubes filled with sand, peat-agrolite (4:1 v/v) and vega-tepojal soil (3:1 v/v). The experimental design was a randomized complete block factorial arrangement, with four repetitions of five experimental units. Six months after establishment, three repetitions of four plants per treatment were selected, and the following were evaluated: plant height, neck diameter, weight of fresh and dry root matter, number of roots per order and root length. The data were analyzed with the statistical package SAS, an ANOVA and Tukey's comparison of means were determined (p ≤ 0.05). The variable number of roots was subjected to polynomial regression analysis. Vega-tepojal soil gave quality to aerial and radical development, being an alternative for the development of plants in the nursery, Volkamerian lemon showed greater total root length, and second, third, fourth and fifth order roots were found in all rootstocks. In the container the roots developed up to the wall, then they went to the base, where there was natural pruning. The substrate and container influenced the development and shape of the root in the four rootstocks.

Downloads

Download data is not yet available.

Author Biographies

  • José Maclovio Sautto Vallejo, Universidad Autónoma de Guerrero

    Universidad Autónoma de Guerrero, Centro Regional de Educación Superior de la Costa Chica, Campus Cruz Grande, Carretera Cruz Grande – Ayutla S/N, CP. 41800. Cruz Grande, Florencio Villarreal, Guerrero, México.

  • Adelaido Rafael Rojas García, Universidad Autónoma de Guerrero

    Universidad Autónoma de Guerrero, Facultad de Medicina Veterinaria y Zootecnia No 2. Carretera Federal Acapulco-Pinotepa Nacional km 197, CP. 41940. Cuajinicuilapa, Guerrero, México.

  • Ángel Villegas Monter, Colegio de postgraduados

    Colegio de postgraduados, Campus Montecillo, km 36.5, CP. 56230. Carretera México-Texcoco, Estado de México.

  • María de los Ángeles Maldonado Peralta, Universidad Autónoma de Guerrero

    Universidad Autónoma de Guerrero, Centro Regional de Educación Superior de la Costa Chica, Campus Cruz Grande, Carretera Cruz Grande – Ayutla S/N, CP. 41800. Cruz Grande, Florencio Villarreal, Guerrero, México.

  • Claudia Yanet Wilson García, Universidad Autónoma Chapingo

    Universidad Autónoma Chapingo, Sede San Luis Acatlán. Carretera San Lus Acatlán-Horcasitas, CP. 41603, Playa Larga, San Luis Acatlán, Guerrero, México.

  • Santo Ángel Ortega Acosta, Universidad Autónoma de Guerrero

    Universidad Autónoma de Guerrero, Facultad de Ciencias Agropecuarias y Ambientales, Unidad Tuxpan. Carretera Iguala-Tuxpan km 2.5, CP. 40101. Iguala de la Independencia, Guerrero, México. 

References

Allen KS, Harper RW, Bayer A, Brazee NJ (2017) A review of nursery production systems and their influence on urban tree survival. Urban For Urban Green 21: 183-191. https://doi.org/ 10.1016/J.UFUG.2016.12.002.

Barrera-Ramírez R, Vargas-Hernández JJ, López-Aguillón R, Muñoz-Flores HJ, Treviño-Garza EJ, Aguirre-Calderon OA (2021) Impac of external and internal factors on successful grafting of Pinus pseudostrobus var. oaxacana (Mirov) Harrison. Revista Chapingo Serie Ciencias Forestales y del Ambiente 27: 243-256. https://doi.org/10.5154/r.rchscfa.2020.05.037.

Bontpart T, Concha C, Gluffrida MV, Robertson I, Admkie K, Degefu T, Girma N, Tesfaye K, Halleselassie T, Fikre A, Fetene M, Tsaftaris SA, Doerner P (2020) Affordable and robust phenotyping framework to analyse root system architecture of soil-grown plants. The Plant Journal 103: 2330-2343. https://doi.org/10.1111/tpj.14877

Budiarto R, Poerwanto R, Santosa E Efendi D (2019) A review of root pruning to regulate citrus growth. Journal of Tropical Crop Science 6: 1-7.

Castro-Garibay SL, Aldrete A, López-Upton J, Ordáz-Chaparro VM (2018) Efecto del envase, sustrato y fertilización en el crecimiento de Pinus greggii var. australis en vivero. Agrociencia 52:115-127.

Cruz AM, Uilian CD, Santiago CD, Colombo RC, de Andrade PC, Hissano TZ, Vieira FNCS (2019) Initial shoot development and root architecture of citrus rootstocks. Semina: Ciências Agrárias 40: 1393-1404. https://doi.org/10.5433/1679-0359.2019v40n4p1393

Elsysy M, Einhorn TC (2022) Air-pruning con- tainers modify root and scion growth and alter resource allocation of bench-grafted apple plants. Horticulturae 8: 797. https://doi.org/ 10.3390/horticulturae8090797.

Giehl RF, von-Wiren N (2014) Root nutrient foraging. Plant Physiology 166: 509-517. https://doi.org/10.1104/pp.114.245225

Grossnickle SC, El-Kassaby YA (2015) Bareroot versus container stock types: A performance comparison. New Forests 47: v1-51. https://doi. org/10.1007/S11056-015-9476-6.

Hankin S, Watson G (2020) Oak taproot growth disruption differentially impacts root architecture during nursery production. Forests 11(8): 798. https://doi.org/10.3390/f11080798

Hildebrant T (2017) Conifer propagation. American Conifer Society. https://conifersociety.org/conifers/articles/conifer-propagation-101/. Fecha de consulta: 10 de enero de 2024.

INEGI (2023) Compendio de información geográfica municipal de los Estados Unidos Mexicanos. Coordinación de Desarrollo de Proyectos. Subdirección de Actualización de Marco Geoestadístico. Instituto Nacional de Estadística y Geografía. Dirección General de Geografía. www.inegi.gob.mx/prod_serv/..espanol/bvinegi/.../2005/agenda2005.pdf. Fecha de consulta: 25 de enero de 2024.

Kita K, Kon H, Ishizuka W, Agathokleous E, Kuromaru M (2018) Survival rate and shoot growth of grafted Dahurian larch (Larix gmelinii var. japonica): A comparison between Japanese larch (L. kaempferi) and F1 hybrid larch (L. gmelinii var. japonica × L. kaempferi) rootstocks. Silvae Genetic 67: 111-116. https://doi. org/10.2478/sg-2018-0016.

López AED, López LMA, Ramírez HC, Aguilera RM (2023) Efecto del riego, la fertilización y el contenedoren la respuesta a la injertación de plántulas de Pinus patula Schltdl. & Cham. Revista Mexicana de Ciencias Forestales 14: 119-142.

Luo H, Hu H, Chu C, He F, Fang S (2020) High temperature can change root system architecture and intensify root interactions of plant seedlings. Frontiers in Plant Science 11: 160-173. https://doi. org/10.3389/fpls.2020.00160

Lynch JP, Strock CF, Schneider HM, Sidhu JS, Ajmera I, Galindo-Casta~neda T, Klein SP, Han- lon MT (2021) Root anatomy and soil resource capture. Plant Soil 466: 21-63. https://doi. org/10.1007/s11104-021-05010-y.

Mariotti B, Maltoni A, Jacobs DF, Tani A (2015) Container effects on growth and biomass allo- cation in Quercus robur and Juglans regia seedlings. Scandinavian Journal of Forest Research 30: 401-415. https://doi.org/10.1080/02827581.2015. 1023352.

Meneses NT, Coelho FMA, Santos FHP, dos Santos deALL, Gesteira daSA, Soares Fdos SW (2020) Rootstocks and planting types on root architecture and vegetative vigor of "Pera" sweet orange trees. Revista Brasileira de Engenharia Agrícola e Ambiental 24: 685-693. http://dx.doi.org/10.1590/1807-1929/agriambi.v24n10p685-693

Montagnoli A, Dumroese RK, Negri G, Scippa GS, Chiatante D, Terzaghi M (2022) Asymmetrical copper root pruning may improve root traits for reforesting steep and/or windy sites. New Forests 53:1093-1112. https://doi.org/10. 1007/s11056-022-09913-1.

Ötvös K, Marconi M, Vega A, O´Brien J, Johnson A, Abualia R, Antonelli L, Montesinos JC, Zhang Y, Tan S, Cuesta C, Arthner C, Bouguyon E, Gojon A, Frimi J, Gutiérrez RA, Wabnik K, Benková E (2021) Modulation of plant rot growth by nitrogen source-defined regulation of polar aux transport. The EMBO Journal 40: 1-21. https://doi.org/10.15252/embj.2020106862

Pokhrel A, Albrecht U (2024) Evaluation of different container types on root structure and performance of nursery-grown citrus plants. HortScience 59: 1056-1064. https://doi.org/10.21273/HORTSCI17979-24

Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees 21: 385-402.

Rune G (2003) Slits in container wall improve root structure and stem straightness of out planted Scots pine seedlings. Silva Fennica 37: 333-342.

Ryan PR, Delhaize E, Watt M, Richardson AE (2016) Plant roots: understanding structure and function in an ocean of complexity. Annals of Botany 118: 555-559. https://doi.org/10.1093/aob/mcw192

SAS (2009) SAS/STAT® 9.3 User’s Guide. SAS Institute. Cary, North Carolina. USA. 8621p.

Souad El-M, Amraoui MB (2020) Effect of properties on Growth of Quercus ilex L. in humid and cold mountains of Morocco. Applied and Environmental Soil Science 1: 1-9. https://doi.org/10.1155/2020/8869975

Vashisth T, Chun C, Hampton MO (2020) Florida citrus nursery trends and strategies to enhance production of field-transplant ready citrus plants. Horticulturae 6: 1-8. https://doi.org/10.3390/ HORTICULTURAE6010008.

Watson G, Hewitt A (2020) Changes in tree root architecture resulting from field nursery production practices. Journal of Environmental Horticulture 38: 22-28. https://doi.org/10.24266/0738-2898-38.1.22

Downloads

Published

2025-03-19

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Sautto Vallejo, J. M., Rojas García, A. R., Villegas Monter, Ángel, Maldonado Peralta, M. de los Ángeles, Wilson García, C. Y., & Ortega Acosta, S. Ángel. (2025). Root characterization of citrus rootstocks grown in containers. Ecosistemas Y Recursos Agropecuarios, 11(IV). https://doi.org/10.19136/era.a11nIV.4045

Most read articles by the same author(s)