Morphometry, physiology, biochemistry and minerals in Suaeda edulis ecotypes with diluted seawater
DOI:
https://doi.org/10.19136/era.a12n1.4472Keywords:
Salinity, water stress, plant physiology, secondary metabolism, adaptationAbstract
Salinity is an abiotic factor that affects plant growth and development. However, some halophyte species develop mechanisms to tolerate saline conditions. The objective was to evaluate morphophysiological and biochemical characteristics, and mineral accumulation of Suaeda edulis Flores Olv. & Noguez. The experiment was conducted in a floating-root hydroponic system with a completely randomized design with a factorial arrangement. The first factor was three S. edulis ecotypes that were subjected to a second factor consisting of salinity stress (seawater diluted with Oreochromis niloticus wastewater) with four electrical conductivities (2.5, 10.0, 15.0, 30.0 dS m-1). The variables evaluated were growth parameters, chlorophyll content, water potential, protein content, ether extract and crude fiber, and mineral content. The results showed that most of the variables showed significant differences in the interaction of the factors. There is a differential response of the ecotypes to stress treatments, observing a polynomial (cubic/quartic) trend in the variables, which showed low values at low electrical conductivities, a maximum positive response at intermediate levels of electrical conductivity, suggesting optimal conditions for growth, and at high electrical conductivity, a decrease was observed in most of the variables. The differential accumulation of sodium and potassium indicates exclusion and tolerance mechanisms that vary between ecotypes. These findings highlight the potential of S. edulis to grow in environments with moderate salinity and provide information on its adaptive physiology.
Downloads
References
Agudelo A, Carvajal M, Martinez-Ballesta MDC (2021) Halophytes of the mediterranean basin- underutilized species with the potencial to be nutritious crops in the scenario of the climate change. Foods 10(1):119. https://doi.org/10.3390/foods10010119
Akhtar MS (2019) Salt stress, microbes and plant interactions: Causes and solution. 1st ed. Editorial Springer. Singapore. 297 p. https://doi.org/10.1007/978-981-13-8801-9
Álvarez-García M, Urrestarazu M, Guil-Guerrero JL, Jiménez-Becker S (2019) Effect of fertigation using fish production wastewater on Pelargonium x zonale growth and nutrient content. Agricultural Water Management 223:105726. https://doi.org/10.1016/j.agwat.2019.105726
Bhattacharya A (2022) Physiological processes in plants under low temperature stress, 1st ed. Editorial Springer. Singapore. 734 p. https://doi.org/10.1007/978-981-16-9037-2
Boyd C, Gautier D (2000) Effluent composition and water quality standards. Global Aquaculture Advocate 3(5):61-66.
Buhmann AK, Waller U, Wecker B, Papenbrock J (2015) Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agricultural Water Management 149:102-114. https://doi.org/10.1016/j.agwat.2014.11.001
Castañeda-Loaiza V, Oliveira M, Santos T, Schüler L, Lima AR, Gama F, Salazar M, Neng NR, Nogueira JMF, Varela J, Barreira L (2020) Wild vs cultivated halophytes: Nutritional and functional differences. Food Chemistry 333:127536. https://doi.org/10.1016/j.foodchem.2020.127536
Chinnusamy V, Zhu JK (2004) Plant salt tolerance. In Plant Responses to Abiotic Stress. Hirt H, Shinozaki K. Eds. Springer. Berlin/Heidelberg, Germany, pp. 241-270. https://doi.org/10.1007/978-3-540-39402-0_10
Costa-Becheleni FR, Troyo-Diéguez E, Nieto-Garibay A, Bustamante-Salazar LA, García-Galindo HS, Murillo-Amador B (2021) Hydro-environmental criteria for introducing an edible halophyte from a rainy region to an arid zone: A study case of Suaeda spp. as a new crop in NW México. Plants 10:1996. https://doi.org/10.3390/plants10101996
Dajic Z (2006) Salt stress. In: Madhava Rao K, Raghavendra A, Janardhan Reddy K (eds). Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4225-6_3
Doncato KB, Costa CSB (2021) Micronutrient supplementation needs for halophytes in saline aquaponics with BFT system water. Aquaculture 531. 735815. https://doi.org/10.1016/j.aquaculture.2020.735815
EI-Hendawy S, AL-Suhaibani N, Dewir Y H, Elsayed S, Tahir MU (2019) Ability of modified spectral reflectance indices for estimating growth and photosynthetic efficiency of wheat under saline field conditions. Agronomy 9(1):35. https://doi.org/10.3390/agronomy9010035
El Poder del Consumidor (2015) El poder de ... Los Romeritos. Disponible en línea: https://elpoderdelconsumidor.org/2015/12/el-poder-de-los-romeritos/. Acceso el 11 de diciembre de 2024.
El-Kazzaz KA, El-Kazzaz AA (2017) Soilless agriculture a new and advanced method for agriculture development: an introduction. Agricultural Research & Technology: Open Access Journal. 3(2): 555610. https://doi.org/10.19080/ARTOAJ.2017.03.555610
Ferren WR, Schenk HJ (2004) Suaeda. In: Flora of North America Editorial Committee Ed. Flora of North America. North of Mexico. Oxford University Press, New York. Vol. 4, pp. 390-398.
Ghanem AMFM, Mohamed E, Kasem AMMA, El-Ghamery AA (2021) Differential salt tolerance strategies in three halophytes from the same ecological habitat: Augmentation of antioxidant enzymes and compounds. Plants 10(6):1100. https://doi.org/10.3390/plants10061100
Gheraissa N, Chemsa AE, Cherrada N, Erol E, Elsharkawy ER, Ghemam-Amara D, Zeghoud S, Rebiai A, Messaoudi M, Sawicka B, Atanassova M, Abdel-Kader MS (2023) Biochemical profile and in vitro therapeutic properties of two euhalophytes, Halocnemum strobilaceum Pall. and Suaeda fruticosa (L.) Forske., grown in the Sabkha Ecosystem in the Algerian Sahara. Molecules 28(8):3580. https://doi.org/10.3390/molecules28083580
Glenn EP, O'Leary JW (1984) Relationship between salt accumulation and water content of dicotyledonous halophytes. Plant Cell & Environment 7:253-261. https://doi.org/10.1111/1365-3040.ep11589448
Goto K, Yabuta S, Ssenyonga P, Tamaru S, Sakagami JI (2021) Response of leaf water potential, stomatal conductance and chlorophyll content under different levels of soil water, air vapor pressure deficit and solar radiation in chili pepper (Capsicum chinense). Scientia Horticulturae 281:109943, https://doi.org/10.1016/j.scienta.2021.109943.
Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology 31:149-190.
Griffiths H, Males J (2017) Succulent plants. Current Biology 27(17):R890-R896. https://doi.org/10.1016/j.cub.2017.03.021
Guevara-Olivar BK (2019) Respuestas fisiológicas de romerito (Suaeda mexicana) y verdolaga (Portulaca oleracea) a diferentes niveles de salinidad en la solución de riego. Tesis para obtener el grado doctorado en ciencias. Colegio de Posgraduados. Montecillo, Texcoco, Estado de México. 108 p. http://colposdigital.colpos.mx:8080/xmlui/handle/10521/3852
Hernández JA, Almansa MS, Del Río L, Sevilla F (1993) Effect of salinity on metalloenzymes of oxygen metabolism in two leguminous plants. Journal of Plant Nutrition 16(12):2539-2554. https://doi.org/10.1080/01904169309364701
Jēkabsone A, Andersone-Ozola U, Karlsons A, Romanovs M, Ievinsh G (2022) Effect of salinity on growth, ion accumulation and mineral nutrition of diffearent accessions of a crop wild relative legume species, Trifolium fragiferum. Plants 11(6):797. https://doi.org/10.3390/plants11060797
Ke-Fu Z (1991) Desalinization of saline soils by Suaeda salsa. Plant and Soil 135:303-305. https://doi.org/10.1007/BF00010921
Khan MA, Ungar IA, Showalter AM (2000) The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticose (L.) Forssk. Journal of Arid Environments 45(1):73-84. https://doi.org/10.1006/jare.1999.0617
Kumari A, Das P, Parida AK, Agarwal PK (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science 6:537. https://doi.org/10.3389/fpls.2015.00537
Labidi N, Ammari M, Mssedi D, Benzerti M, Snoussi S, Abdelly C (2010). Salt excretion in Suaeda fruticosa. Acta Biologica Hungarica 61(3): 229-312. https://doi.org/10.1556/abiol.61.2010.3.6
Levinsh G (2023) Water content of plant tissues: So simple that almost forgotten? Plants 12:1238. https://doi.org/10.3390/plants12061238
Li J, Hussain T, Feng X, Guo K, Chen H, Yang C, Liu X (2019) Comparative study on the resistance of Suaeda glauca and Suaeda salsa to drought, salt, and alkali stresses. Ecological Engineering 140:105593. https://doi.org/10.1016/j.ecoleng.2019.105593
Lombardi T, Bertacchi A, Pistelli L, Pardossi A, Pecchia S, Toffanin A, Sanmartin C (2022) Biological and agronomic traits of the main halophytes widespread in the Mediterranean region as potential new vegetable crops. Horticulturae 8:195. https://doi.org/10.3390/horticulturae8030195
Lutts S, Lefevre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Annals of Botany 115:509-528. https://doi.org/10.1093/aob/mcu264
Maatallah Zaier M, Ciudad-Mulero M, Cámara M, Pereira C, Ferreira ICFR, Achour L, Kacem A, Morales P (2020) Revalorization of Tunisian wild Amaranthaceae halophytes: Nutritional composition variation at two different phenotypes stages. Journal of Food Composition and Analysis 89:103463. https://doi.org/10.1016/j.jfca.2020.103463
Maggio A, Reddy MP, Joly RJ (2000) Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity. Environmental and Experimental Botany 44(1):31-38. https://doi.org/10.1016/S0098-8472(00)00051-4
Noguez-Hernández R, Carballo-Carballo A, Flores-Olvera H (2013) Sueda edulis (Chenopodiaceae), una nueva especie de lagos salinos del centro de México. Botanical Sciences 91 (1):19-25.
Nukaya A, Masuis M, Ishida A (1982) Salt tolerance of green soybeans as affected by various salinities in sand cultures. Journal of Japan Society of Hortcultural Science 50(4):487-496. https://doi.org/10.2503/jjshs.50.487
Pearson GA, Ayers AD, Eberhard DL (1966) Relative salt tolerance of rice during germination and early seedling development. Soil Science 102(3):151-156.
Qasim M, Abideen Z, Adnan MY, Gulzar S, Gul B, Rasheed M, Khan MA (2017) Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South African Journal of Botany 110:240-250. https://doi.org/10.1016/j.sajb.2016.10.005
Qi CH, Chen M, Song J, Wang BS (2009) Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under salinity. Plant Science 176(2):200-205. https://doi.org/10.1016/j.plantsci.2008.09.019
Rahman MM, Mostofa MG, Keya SS, Siddiqui MN, Ansary MMU, Das AK, Rahman MA, Tran LSP (2021) Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. International Journal of Molecular Sciences 22:10733. https://doi.org/10.3390/ijms221910733
Shpigel M, Ben-Ezra D, Shauli L, Sagi M, Ventura Y, Samocha T, Lee JJ (2013) Constructed wetland with Salicornia as a biofilter for mariculture effluents. Aquaculture 412-413:52-63. https://doi.org/10.1016/j.aquaculture.2013.06.038
Strain HH, Svec WA (1966) Extraction, separation, estimation, and isolation of the chlorophylls. In: Vernon LP, Seely GR (Eds). The Chlorophylls. Academic Press, London. 21-66. http://doi.org/10.1016/B978-1-4832-3289-8.50008-4
TIBCO Software Inc. 2018. Statistica (data analysis software system), version 13. http://tibco.com
Wetson AM, Zörb C, John EA, Flowers TJ (2012) High phenotypic plasticity of Suaeda maritima observed under hypoxic conditions in relation to its physiological basis. Annals of Botany 109(5):1027-1036. https://doi.org/10.1093/aob/mcs014
Yep B, Zheng Y (2019) Aquaponic trends and challenges – A review. Journal of Cleaner Production. 228:1586-1599. https://doi.org/10.1016/j.jclepro.2019.04.290
Zhang, X, Li S, Tang T, Liu Y, Tahir MM, Wang C, Meng Z, Niu J, Yang W, Ma J, Zhang D (2022) Comparison of morphological, physiological, and related-gene expression responses to saline-alkali stress in eight apple rootstock genotypes. Scientia Horticulturae 306:111455. https://doi.org/10.1016/j.scienta.2022.111455
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ecosistemas y Recursos Agropecuarios

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).