Efecto antifúngico in vitro de hongos endófitos de cucurbitáceas criollas de Yucatán

Autores/as

DOI:

https://doi.org/10.19136/era.a11n2.3992

Palabras clave:

Antibiosis, Cucumis sativus, Cultivos duales, Hongos fitopatógenos, Lagenaria siceraria

Resumen

Los hongos endófitos son microorganismos simbiontes de plantas, diversos y abundantes en regiones tropicales, con gran potencial como agentes biocontroladores de enfermedades fúngicas agrícolas. El objetivo del presente trabajo fue evaluar la actividad antifúngica in vitro de los hongos endófitos asociados con cultivares criollos de Cucumis sativus y Lagenaria siceraria de Yucatán. Las cepas endófitas fueron aisladas e identificadas de diferentes órganos de las plantas, para posteriormente ser sometidas a enfrentamientos duales y pruebas de antibiosis. Se identificaron 20 especies de hongos endófitos con efectos antifúngicos contra Corynespora cassiicola, Colletotrichum truncatum y Fusarium equiseti, obteniendo rangos de inhibición de 17.72–100%, 16.51–91.55% y 4.64–91.89%, respectivamente. Aspergillus flavus, Lasiodiplodia pseudotheobromae y Trichoderma longibrachiatum exhibieron los mayores porcentajes de inhibición contra los tres fitopatógenos. Así mismo, estas tres especies de endófitos demostraron un efecto antibiótico en sus extractos, al inhibir principalmente el crecimiento de F. equiseti hasta en un 46.46%. La cepa de L. pseudotheobromae tiene características que le confieren un potencial como agente antifúngico, por lo que se deberán seguir explorando sus aplicaciones y condiciones de crecimiento. Este trabajo representa un primer esfuerzo por conocer la diversidad de hogos endófitos en los cultivos criollos de la región.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Alberto Uc-Várguez, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC

    Doctor en ciencias y Biotecnología de plantas, perteneciente al Sistema Nacional de Investigadoras e Investigadores con Nivel I, cuya línea de investigación es Biotecnología Vegeta, sublínea Fitopatología.

  • Felicia Amalia Moo-Koh, Tecnológico Nacional de México/Campus Conkal

    Doctora en Ciencias en Agricultura Tropical Sustentable, perteneciente al Sintema Nacional de Investigadoras e Investigadores con Nivel I, línea de investigación en protección de cultivos con la utilización de microorganismos benéficos en la agricultura.

  • José María Tun Suárez, Tecnológico Nacional de México/Campus Conkal

    Doctor en Ciencias en Fitopatología, con línea de investigación en el diagnóstico y control de enfermedades en cultivos hortícolas tropicales; con enfoque en utilización de microorganismos antagonistas en el control de hongos fitopatógenos foliares, y microorganismos inductores de resistencia a virus fitopatógenos en plantas.

Referencias

Alam B, Lı J, Ge Q, Khan MA, Gong J, Mehmood S, Yuán Y, Gong W (2021) Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa? Frontiers in Plant Science 12:791033. http//doi.org/10.3389/fpls.2021.791033.

Bacon CW, White JF (2016) Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis 68: 87-98. https://doi.org/10.1007/s13199-015-0350-2.

Balbinot RB, De Oliveira JAM, Bernardi DI, Polli AD, Polonio JC, Cabral MRP (2021) Chromolaena laevigata (Asteraceae) as a source of endophytic non-aflatoxigenic Aspergillus favus: chemical profile in different culture conditions and biological ap-plications. Brazilian Journal of Microbiology 52: 1201-1214. https://doi.org/10.1007/s42770-021-00502-6. 47.

Barnett HL, Hunter BB (1998) Illustrated genera of imperfect fungi. 3rd ed. American Phytopathological Society Press. Minnesota, EE.UU. 241p.

Baron NC, Rigobelo EC, Zied DC (2019) Filamentous fungi in biological control: current status and future perspectives. Chilean Journal of Agricultural Research 79: 307-315. https://doi.org/10.4067/s0718-58392019000200307.

Beltrán M, Delgado JC, Valdivia A, Hernández A, García AM (2023) First report of Fusarium equiseti causing root and crown root in tomato in Mexico. Plant Disease 107: 2542. https://doi.org/10.1094/PDIS-10-22-2494-PDN.

Benítez-Malvido J, Gavito ME (2012) Interacción entre plantas y hongos. In: Del-Val E, Boege K (eds) Ecología y evolución de las interacciones bióticas. Universidad Nacional Autónoma de México. Ciudad de México, México. pp: 140-174.

Boughalleb-M’Hamdi N, Ben Salem I, M’Hamdi M (2018) Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egyptian Journal of Biological Pest Control 28: 1-12. https://doi.org/10.1186/s41938-017-0010-3.

Crous P, Carlier J, Roussel V, Groenewald JZ (2020). Pseudocercospora and allied genera associated with leaf spots of banana (Musa spp.). Fungal Systematics and Evolution 7: 1-19. http://doi: 10.3114/fuse.2021.07.01.

Cruz-Cerino P, Cristóbal-Alejo J, Ruiz-Carrera V, Carnevali G, Vera-Ku M, Martín J, Reyes F, Gamboa-Angulo M (2020) Extracts from six native plants of the Yucatán Peninsula hinder mycelial growth of Fusarium equiseti and F. oxysporum, pathogens of Capsicum chinense. Pathogens 9(10): 827. https://doi.org/10.3390/pathogens9100827.

Degani O, Rabinovitz O, Becher P, Gordani A, Chen A (2021) Trichoderma longibrachiatum and Trichoderma asperellum confer growth promotion and protection against late wilt disease in the field. Journal of Fungi 7: 444. https://doi.org/10.3390/jof7060444

Derbalah AS, Elkot GA (2011) Cultural filtrates of certain microbial isolates as an alternative to powdery mildew chemical control in cucumbers. Journal of Pesticide Science 36:402-406. https://doi.org/10.1584/jpestics.G11-23.

Dramae A, Intaraudom C, Bunbamrung N, Boonyuen N, Auncharoen P, Pittayakhajonwut P (2022) Antimicrobial tanzawaic acid derivatives from the endophytic Penicillium citrinum BCC71086. Tetrahedron 106-107: 132646. https://doi.org/10.1016/j.tet.2022.132645.

Edwards-Molina JP, Paul PA, Amorim L, Da Silva LHCPF, Siqueri V, Borges EP, Balardin RS (2019) Effect of target spot on soybean yield and factors affecting this relationship. Plant Pathology 68: 107-115. https://doi.org/10.1111/ppa.12944.

Gamboa-Gaitán MA (2006) Hongos endófitos tropicales: conocimiento actual y perspectivas. Acta Biológica Colombiana 11(Suppl. 1): 3-20.

Gilchrist-Saavedra L, Fuentes-Dávila G, Martínez-Cano C, López-Atilano RM, Duveiller E, Singh RP, Henry M, García I (2015) Guía práctica para la identificación de algunas enfermedades de trigo y cebada. CIMMYT. Ciudad de México, México. 68p.

González V, Armijos E, Garcés-Claver A (2020) Fungal endophytes as biocontrol agents against the main soil-borne diseases of melon and watermelon in Spain. Agronomy 10: 820. https://doi.org/10.3390/agronomy10060820.

He MH, Li DL, Zhu W, Wu EJ, Yang LN, Wang YP, Waheed A, Zhan J (2017) Slow and temperature-mediated pathogen adaptation to a nonspecific fungicide in agricultural ecosystem. Wiley Evolutionary Aplications 11: 182-192. https://doi.org/10.1111/eva.12526.

Huang LQ, Niu YC, Su L, Deng H, Lyu H (2020) The potential of endophytic fungi isolated from cucurbit plants for biocontrol of soilborne fungal diseases of cucumber. Microbiological Research 23: 1-11. https://doi.org/10.1016/j.micres.2019.126369.

Huertas L (2008) El control ambiental en invernaderos: humedad relativa. Horticultura 205: 52-54.

Jalil MTM, Ibrahim D (2022) Volatile bioactive compounds from Lasiodiplodia pseudotheobromae IBRL OS-64, an endophytic fungus residing in the leaf of Ocimum sanctum. Hayati Journal of Biosciences 29(5): 570-585. http://doi.org/10.4308/hjb.29.5.570-585.

Juárez-Becerra GP, Sosa-Morales ME, López-Malo A (2010) Hongos fitopatógenos de alta importancia económica: descripción y métodos de control. Temas Selectos de Ingeniería de Alimentos 4: 14-23.

Khan AL, Hussain J, Al-Harrasi A (2013) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology 35: 62-74. https://doi.org/10.3109/07388551.2013.800018.

Khan IH, Javaid A (2020) In vitro biocontrol potential of Trichoderma pseudokoningii against Macrophomina phaseolina. International Journal of Agriculture And Biology 24: 730-73. https://doi.org/10.17957/IJAB/15.1494

Khan RAA, Najeeb S, Hussain S (2020) Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms 8: 817. https://doi.org/10.3390/microorganisms8060817

Kim CK, Eo JK, Eom AH (2013) Diversity and seasonal variation of endophytic fungi isolated from three conifers in Mt. Taehwa, Korea. Mycobiology 41: 82-85. https://doi.org/10.5941/myco.2013.41.2.82

Korejo F, Ali SA, Shafique HA, Sultana V, Ara J, Ehteshamul-Haque S (2014) Antifungal and antibacterial activity of endophytic Penicillium species isolated from salvadora Species. Pakistan Journal of Botany 46: 2313-2318.

Leon-Ttacca B, Yactayo-Yataco R, Astete-Farfán A, Mattos-Calderón L, Arestegui-Cantoral J (2022) Antibiosis and mycopara-sitism of endophytic fungi on the causal agent of blueberry gray mold (Botrytis cinerea). Bioagro 34: 209-220. https://doi.org/10.51372/bioagro343.1

Lira-Saade R (2004) Cucurbitaceae de la Península de Yucatán. Etnoflora Yucatanense 22. Universidad Autónoma de Yucatán. Mérida, México. 312p.

Lira-Saade R, Rodríguez-Arévalo NI (2011) Angiospermae. Magnoliopsida. Cucurbitaceae Juss. In: García-Mendoza AJ, Meave JA (eds) Diversidad florística de Oaxaca: de musgos a angiospermas (colecciones y lista de especies). Universidad Nacional Autónoma de México. Ciudad de México, México. pp: 215-217.

Liu X, Dou G, Ma Y (2016) Potential of endophytes from medicinal plants for biocontrol and plant growth promotion. Journal of General Plant Pathology 82: 165-173. https://doi.org10.1007/s10327-016-0648-9

Luo H, Meng S, Deng Y, Deng Z, Shi H (2023) In vitro antifungal activity of lasiodiplodin, isolated from endophytic fungus Lasiodiplodia pseudotheobromae J-10 associated with Sarcandra glabra and optimization of culture conditions for lasiodiplodin production. Archives of Microbiology 205: 140. https://doi.org/10.1007/s00203-023-03440-z.

Mousa WK, Schwan A, Davidson J (2015) An endophytic fungus isolated from finger millet (Eleusine coracana) produces antifungal natural products. Frontiers in Microbiology 6: 1157. https://doi.org/10.3389/fmicb.2015.01157.

Mu L, Niu Y, Deng H (2010) The endophytic mycobiota in summer growing cucumber in Beijing. Mycosystema 29: 214-221. https://doi.org/10.13346/j.mycosystema.2010.02.021.

Nascimento TL, Oki Y, Lima DMM (2015) Biodiversity of endophytic fungi in different leaf ages of Calotropis procera and their antimicrobial activity. Fungal Ecology 14:79-86.

https://doi.org/10.1016/j.funeco.2014.10.00.

Ngo MT, Nguyen MV, Han JW, Park MS, Kim H, Choi GJ (2021) In Vitro and In Vivo antifungal activity of sorbicillinoids produced by Trichoderma longibrachiatum. Journal of Fungi 7(6): 428. https://doi.org/10.3390/jof7060428.

Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Functional Ecology 28: 299-314. https://doi.org/10.1111/1365-2435.12076.

Pemán J, Salavert M (2014) Enfermedad fúngica invasora por Scedosporium, Fusarium y Mucor. Revista Iberoamericana de Micología 31: 242-248. https://doi.org/10.1016/j.riam.2014.05.002

Rahman MZ, Ahmad K, Siddiqui Y, Saad N, Hun TG, Hata EM, Rashed O, Hossain MI (2022) First report of Fusarium equiseti causing fruit rot disease of watermelon in Malaysia. Plant Disease 106:326. https://doi.org/10.1094/PDIS-05-21-1027-PDN.

Rashad YM, Abdalla SA, Shehata AS (2022) Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic en-dophyte with ability to overexpress defense-related genes against Fusarium root rot of maize. BMC Microbiology 22: 229. https://doi.org/10.1186/s12866-022-02651-6.

Rashmi M, Kushveer JS, Sarma VV (2019) A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10: 789-1079. https://doi.org/10.5943/mycosphere/10/1/19.

Rivera JM (2008) Deterioro poscosecha de las frutas y hortalizas frescas por hongos y bacterias. Fundación Hondureña de Investigación Agrícola. http://www.fhia.org.hn/descargas/Departamento_de_Proteccion_Vegetal/hoja_tecnica_proteccion_vegetal01.pdf. Fecha de consulta: 12 de mayo de 2024.

Segaran G, Sathiavelu M (2023) Fungicidal and plant growthpromoting traits of Lasiodiplodia pseudotheobromae, an endophyte from Andrographis paniculata. Frontiers in Plant Science 14: 1125630. https://doi.org/10.3389/fpls.2023.1125630.

Silva CFB, Michereff SJ, Albuquerque HS, Silva JA, Oliveira SMA, Dantas SAF (2002) Epidemiología de enfermedades fúngicas de postcosecha en frutos de papaya. Boletín Micológico 17: 1-7. https://doi.org/10.22370/bolmicol.2002.17.0.432

Song S, Li M, Huang JE, Liu F (2023) Two new species of Scolecobasidium (Venturiales, Sympoventuriaceae) associated with true mangrove plants and S. terrestre comb. nov. MycoKeys 96: 113-126. http://doi.org/10.3897/mycokeys.96.100621.

Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A (2020) Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 9(762). http//doi.org.10.3390/plants9060762

Stirling M, Stirling G (1997) Disease management: Biological control. In: Brown J, Ogle H (eds) Plant pathogens and plant diseases. Rockvale Publications. Amidale, Australia. pp. 427-439.

Su L, Niu Y (2018) Multilocus phylogenetic analysis of Talaromyces species isolated from cucurbit plants in China and description of two new species, T. cucurbitiradicus and T. endophyticus. Mycologia 110: 375-386. https://doi.org/10.1080/00275514.2018.1432221.

Su L, Deng H, Niu Y (2016) Phialemoniopsis endophytica sp. nov., a new species of endophytic fungi from Luffa cylindrica in Henan, China. Mycological Progress 15: 48-54. https://doi.org/10.1007/s11557-016-1189-5.

Su L, Deng H, Niu Y (2017) Phylogenetic analysis of Plectosphaerella species based on multi-locus DNA sequences and description of P. sinensis sp. nov. Mycological Progress 16: 823-829. https://doi.org/10.1007/s11557-017-1319-8.

Torres-Calzada C, Tapia-Tussell R, Higuera-Ciapara I, Huchin-Poot E, Martin-Mex R, Nexticapan-Garcez A, Pérez-Brito D (2018) Characterization of Colletotrichum truncatum from papaya, pepper and physic nut based on phylogeny, morphology andpathogenicity. Plant Pathology 67: 821-830. https://doi.org/10.1111/ppa.12800.

Trigos A, Ramírez K, Salinas A (2008) Presencia de hongos fitopatógenos en frutas y hortalizas y su relación en la seguirdad alimentaria. Revista Mexicana de Micología 28: 125-129

Tymon LS, Morgan P, Gundersen B, Inglis DA (2020) Potential of endophytic fungi collected from Cucurbita pepo roots grown under three different agricultural mulches as antagonistic endophytes to Verticillium dahliae in western Washington. Microbiological Research 240. https://doi.org/10.1016/j.micres.2020.126535

Verma SK, Gond SK, Mishra A (2013) Impact of environmental variables on the isolation, diversity and antibacterial activity of endophytic fungal communities from Madhuca indica Gmel. at different locations in India. Annals of Microbiology 64: 721-734. https://doi.org/10.1007/s13213-013-0707-9.

Wang S, Tu J (2023) Invasive pulmonary infection caused by Trichoderma longibrachiatum. Thorax 78: 632-633. https://doi.org/10.1136/thorax-2022-219855

Waqas M, Khan AL, Kamran M (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17: 10754-10773. https://doi.org/10.3390/molecules170910754

Weaver MA, Abbas HK (2019) Field displacement of afatoxigenic Aspergillus favus strains through repeated biological control applications. Frontiers in Microbiology 10: 1788. https://doi.org/10.3389/fmicb.2019.01788

White TJ, Burns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sinnsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Nueva York, EE.UU. Academic Press. pp 315-322.

Xue Q, Niu Y, Deng H (2015) Diversity of endophytic fungi in common cucurbit plants. Mycosystema 34: 196-203. https://doi.org/10.13346/j.mycosystema.140030

Yan L, Song W, Chen Y, Kang Y, Lei Y, Huai D (2021) Effect of non-aflatoxigenic strains of Aspergillus flavus on aflatoxin contamination of preharvest peanuts in fields in China. Oil Crop Science 6: 81-6. https://doi.org/10.1016/j.ocsci.2021.04.004. 48.

Yan L, Zhao H, Zhao X (2018) Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions. Applied Microbiology and Biotechnology 102:6279-6298. https://doi.org/10.1007/s00253-018-9101-7.

Zhang DX, Nagabhyru P, Blankenship JD (2010) Are loline alkaloid levels regulated in grass endophytes by gene expression or substrate availability?. Plant Signaling & Behavior 5: 1419-1422. https://doi.org/10.4161/psb.5.11.13395.

Zhang S, Xu B, Zhang J, Gan Y (2018) Identification of the antifungal activity of Trichoderma longibrachiatum T6 and assessment of bioactive substances in controlling phytopathgens. Pesticide Biochemistry and Physiology 147:59-66. https://doi.org/10.1016/j.pestbp.2018.02.006.

Zizumbo D (1986) El manejo de alta diversidad en plantas cultivadas: estrategia central de la agricultura mesoamericana. Boletín de la Escuela de Ciencias Antropológicas de la Universidad de Yucatán 14: 3-15.

Descargas

Publicado

2024-06-13

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Montañez-De Azcué, D., Cristóbal-Alejo, . J., Uc-Várguez, A., Moo-Koh, F. A., & Tun Suárez, J. M. (2024). Efecto antifúngico in vitro de hongos endófitos de cucurbitáceas criollas de Yucatán. Ecosistemas Y Recursos Agropecuarios, 11(2). https://doi.org/10.19136/era.a11n2.3992

Artículos similares

61-70 de 161

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a