Aboveground biomass and chemical composition of Urochloa grasses at different growth ages in the humid tropics
DOI:
https://doi.org/10.19136/era.a11nIV.4073Keywords:
Grass, forage, nutritional valueAbstract
Urochloa grasses produce high biomass yields and their nutritional value is acceptable for ruminant feeding. The objective of this research was to evaluate the biomass of three Urochloa grasses (Cayman, Humidicola and Toledo) and to determine the best forage source based on their chemical composition and biomass yield under a warm subhumid climate. The work was carried out in 2020 in Isla, Veracruz, Mex. Annual biomass production and chemical composition were evaluated at four regrowth ages [RA; 30, 60, 90, and 120 d after regrowth (DAR)]. A completely randomized block experimental design with a split-plot arrangement was used, where: the large plot was the genotype and the small plot was the regrowth age (30, 60, 90, and 120) with three repetitions. The data were analyzed by analysis of variance (ANOVA) using the GLM/SAS procedure and the treatment means were compared with the Tukey test (ɑ=0.05). The biomass, hemicelluloses, lignin, and ash content was higher (p ≤ 0.05) at 120 DDR, being 19.5 t ha-1 year-1; 21.2, 7.0 and 12.2%, for Humidicola grass, respectively, while cellulose was higher in Toledo grass 41.1 %. Crude protein and acid detergent fiber (p ≤ 0.05) were higher than 30 DDR, 10% and 42.4% for Cayman and Humidicola, respectively. Humidicola, at 90 DDR, presented the highest value of neutral detergent fiber (66.2%, p ≤ 0.05), while the ether extract was not different between cultivars (p ≥ 0.05). According to biomass yield and chemical composition, Humidicola grass is a high-quality forage for ruminants in tropical conditions.
Downloads
References
American Society for Testing and Materials (ASTM) (2012) Annual Book of ASTM Standards. Biological effects and environmental fate; biotechnology. ASTM International, West Cornshohocken, PA, USA. Vol. 11.06. 1461p.
Alves MG, Aparecida de Phino CK, da Costa SE, Soares EP, Flavio NJ, Goncalves RM, Bezerra FP, Guimarães SJF, Gomes GW (2014) Yield and chemical composition of Brachiaria forage grasses in the offseason after corn harvest. American Journal of Plant Sciences 5: 933-941. https://doi.org/10.4236/ajps.2014.57106.
Almeida RG, Nascimento JD, Euclides VPB (2002) Produção animal em pastos consorciados sob três taxas de lotação, no cerrado. Revista Brasileira de Zootecnia 31: 852-857. https://doi.org/10.1590/S1516-35982002000400007
Association of Official Analytical Chemists (1990) Protein (Crude) Determination in Animal Feed. Official Methods of Analysis. 15th ed. Helrich K (ed) AOAC. Arlington. VA, U.S.A. pp. 72-74.
Baptistella JLC, López de ASA, Favarin JL, Mazzafera P (2020) Urochloa in Tropical Agroecosystems. Frontiers in Sustainable Food Systems 4: 1-17. https://doi.org/10.3389/fsufs.2020.00119
Barbosa MM, Detmann E, Filho VS, Detmann CSK, Franco OM, Batista DE, Rocha GC (2017) Evaluation of methods for the quantification of ether extract contents in forage and cattle feces. Anais da Academia Brasileira de Ciências 89: 1295-1303. http://dx.doi.org/101590/0001-3765201720160708
Boddey RM, Macedo R, Tarre MR, Ferreira E, de Oliveira OC, Renzende PdeC, Cantarutti BR, Periera MJ, Alves RJV, Urquiaga S (2004) Nitrogen cycling in Brachiaria pastures: The key to understanding the process of pasture decline. Agriculture, Ecosystems & Environment 103: 389-403. https://doi.org/10.1016/j.agee.2003.12.010
Calzada-Marín JM, Enríquez-Quiroz JF, Ortega-Jiménez E, Hernández-Garay A, Vaquera-Huerta H, Escalante-Estrada JA, Honorato-Salazar JA (2019) Análisis de crecimiento del pasto Toledo Urochloa brizantha (Hochst. ex A. Rich.) R.D. Webster en clima cálido subhúmedo. Agroproductividad 12: 3-9. https://doi.org/10.32854/agrop.v0i0.1443
Carroll A, Somerville C (2009) Cellulosic biofuels. Annual Review of Plant Biology 60: 165-182. https://doi.org/10.1146/annurev.arplant.043008.092125
Cook BG, Schultze-Kraft R (2015) Botanical name changes–nuisance or a quest for precision? Tropical Grasslands-Forrajes Tropicales 3: 34-40. https://doi.org/10.17138/TGFT(3)34-40
Cruz HA, Hernández GA, Aranda IE, Chay CAJ, Márquez QC, Rojas GAR, Gómez VA (2017) Nutritive value of Mulato grass under dierent grazing strategies. Ecosistemas y Recursos Agropecuarios 4: 65-72. https://doi.org/10.19136/era.a4n10.883
Cruz-Sánchez OE, Cruz-Hernández A, Gómez-Vázquez A, Chay-Canul AJ, Joaquín-Cancino S, De la Cruz-Lázaro E, Márquez-Quiroz C, Osorio-Osorio R, Hernández-Garay A (2018) Producción de forraje y valor nutritivo del pasto Mulato II (Bracharia híbrido 36087) a diferente régimen de pastoreo. Agroproductividad 11: 18-23.
Cruz-Hernández A, Hernández-Garay A, Vaquera-Huerta H, Chay-Canul A, Enríquez-Quiroz JF, Ramírez-Vera S (2017) Componentes morfogenéticos y acumulación del pasto mulato a diferente frecuencia e intensidad de pastoreo. Revista Mexicana de Ciencias Pecuarias 8: 101-109. https://doi.org/10.22319/rmcp.v8i1.4310
Da-Silva SHM, Vendramini JMB, Leite de Oliveira FC, Filho SVS, Kaneko M, Silveira M, Sanchez JMD, Yarborough KJ (2020) Harvest frequency effects on herbage characteristics of ‘Mavuno’ brachiariagrass. Crop Science 60: 1113-1122. https://doi.org/10.1002/csc2.20046
Da-Silva SC, Gimenes AMF, Sarmento LOD, Sbrissia FA, Oliveira ED, Hernández-Garay A, Pires VA (2013) Grazing behaviour, herbage intake and animal performance of beef cattle heifers on marandu palisade grass subjected to intensities of continuous stocking management. The Journal of Agricultural Science 151: 727-739. https://doi.org/10.1017/S0021859612000858.
García E (2004) Modificación al Sistema de Clasificación Climática de Köppen. 4ª. Edición. Instituto de Geografía. Universidad Nacional Autónoma de México. México. 217p.
Garay MJR, Estrada DB, Bautista MY, Bernal FA, Mendoza PSI, Martínez GJC, Sosa ME, Cancino SJ (2020) Forage yield and quality of buffel H-17 and Urochloa hybrids at different regrowth ages under semi-arid conditions. Grassland Science 66: 277-284. https://doi.org/10.1111/grs.12278
Goering HK, Van Soest PJ (1970) Forage fiber analyses: apparatus, reagents, procedures, and some applications. No. 379. Agricultural Research Service, Department of Agriculture, USA, 24p. http://dx.doi.org/10.1590/S1516-35982002000400007
González MA, Garay MJR, Estrada DB, Bernal FA, Limas MAG, Cancino SJ (2020) Rendimiento y contenido de proteína en forraje y ensilado de pasto insurgente e híbridos de Urochloa. Revista Mexicana de Ciencias Agrícolas 24: 177-189. https://doi.org/10.29312/remexca.v0i24.2368
Hare MD, Pizarro EA, Phengphet S, Songsiri T, Sutin N (2015) Evaluation of new hybrid brachiaria lines in Thailand. 1. Forage production and quality. Tropical Grasslands – Forrajes Tropicales 3: 83-93. https://doi.org/ 10.17138/tgft(3)83-93
Hatfield DR, Rancour DM, Marita JM (2017) Grass cell walls: A story of cross-linking. Frontiers in Plant Science 18: 1-15. https://doi:10.3389/fpls.2016.02056
Inyang U, Vendramini BJM, Sollenberger EL, Silveira MLA, Sellers B, Adesogan A, Paiva L, Lunpha A (2010) Harvest frequency and stubble height aff ects herbage accumulation, nutritive value, and persistence of ‘Mulato II’ brachiaria grass. Forage and Grazinglands 8: 1-8. https://doi.org/10.1094/FG2010-0923-01-RS
Jančík F, Homolka P, Čermák B, Lád F (2008) Determination of indigestible neutral detergent fibre contents of grasses and its prediction from chemical composition. Czech Journal of Animal Science 53: 128-135. https://doi.org/10.17221/2716-CJAS
Mandebvu P, Westa WJ, Gates NR, Hill GM (1998) Effect of hay maturity, forage source, or neutral detergent fiber content on digestion of diets containing Tifton 85 bermudagrass and corn silage. Animal Feed Science and Technology 73: 281-290. https://doi.org/10.1016/S0377-8401(98)00152-7
Mohammed YI, Abakr AY, Kazi KF, Yusup S, Alshareef I, Chin AS (2015) Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. Energies 8: 3403-3417. https://doi.org/10.3390/en8053403
Previdelli OMA, Pereira da SA, Amorim OAC, Watte SC, Lopes PC, Alves DC (2018) Use of organic compost for the fertilization of Piata and Paiaguas grasses: Effects of dose on morphogenetic, structural, nutritional, and productive characteristics. Compost Science and utilization 26: 1-8. https://doi.org/10.1080/1065657X.2018.1457998
Rojas-García AR, Torres-Salado N, Maldonado-Peralta M de los A, Sánchez-Santillán P, García-Balbuena A, Mendoza-Pedroza SI, Álvarez-Vázquez P, Herrera-Pérez J, Hernández-Garay A (2018) Curva de crecimiento y calidad del pasto cobra (Brachiaria híbrido BR02/1794) a dos intensidades de corte. Agroproductividad 11: 34-38.
Rueda JA, Guerrero RJ, Ramírez OS, Aguilar MCU, Hernández MW, Ortega JE (2020) Morphological composition and fiber partitioning along regrowth in elephant grass CT115 intended for ethanol production. Scientific Reports 10: 1-9. https://doi.org/10.1038/s41598-020-72169-2.
Rueda JA, Ortega JE, Hernández GA, Enríquez QJF, Guerrero RJD, Quero CAR (2016) Growth, yield, fiber content and lodging resistance in eight varieties of Cenchrus purpureus (Schumach.) Morrone intended as energy crop. Biomass and Bioenergy 88: 59-65. https://doi.org/10.1016/j.biombioe.2016.03.007
Rusdy M, Yusuf M, Ismartoyo (2019) Utilization of Leucaena leucocephala and Gliricidia sepium as supplements by goats fed Panicum maximum basal diet. Tropical Animal Health and Production 52: 1-5 https://doi.org/10.1007/s11250-019-02040-8
SAS (2016) Base SAS®9.4 Procedures guide: High-performance procedures. Sixth edition. SAS Institute Inc. Statistical Analysis System. Cary, NC, USA. 170p.
Santiago OMA, Honorato SJA, Quero CAR, Hernández GA, López CC, López GI (2016) Biomasa de Urochloa brizantha cv. Toledo como materia prima para la producción de bioetanol. Agrociencia 50: 711-726.
Silva TP, Detmann E, Filho VCS, Detmann CSK, Barros VL, Martins VCS, Morais EL, Costa VAC (2011) Evaluation of total and non-fatty ether extract in feeds and cattle feces using two analytical methods. Animal Feed Science and Technology 163: 111-117. https://doi.org/10.1016/j.anifeedsci.2010.10.012
Soares FVC, Cavazzana JF, Heinrichs R, Vendramini JMB, Lima GC, Moreira A (2018) The impact of organic biofertilizer application in dairy cattle manure on the chemical properties of the soil and the growth and nutritional status of Urochroa grass. Communications in Soil Science and Plant Analysis 49: 358-370. https://doi.org/10.1080/00103624.2018.1427261
Torres SN, Moctezuma VM, Rojas GAR, Maldonado PM, Gomez VA, Sanchez SP (2020) Comportamiento productivo y calidad de pastos híbridos de Urochloa y estrella pastoreados con bovinos. Revista Mexicana de Ciencias Agrícolas 24: 35-46. https://doi.org/10.29312/remexca.v0i24.2356
Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and non-starch polysacharides in relation to animal nutrition. Journal of Dairy Science (74): 3583-3589. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Van Soest PJ (1994) Nutritional ecology of the ruminant. 2nd Edition. Cornell University Press: Ithaca, NY, USA. 488p.
Van-der-Weijde T, Kamei ACL, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade ML (2013) The potential of C4 grasses for cellulosic biofuel production. Frontiers in Plant Science 4: 1-18. https://doi.org/10.3389/fpls.2013.00107
Vendramini BJM, Adesogan AT, Silveira MLA, Sollenberger EL, Queiroz OC, Anderson WE (2010) Nutritive value and fermentation parameters of warm-season grass silage. The Professional Animal Scientist 26: 193-200. https://doi.org/10.15232/S1080-7446(15)30580-5
Vendramini BJM, Sollenberger EL, Lamb CG, Foster LJ, Liu K, Maddox MK (2012) Forage accumulation, nutritive value, and persistence of ‘Mulato II’ Brachiariagrass in Northern Florida. Crop Science 52: 914-922. https://doi.org/10.2135/cropsci2011.06.0338
Ventura RJ, Honorato SJA, Hernández GA, Aburto AJA, Vaquera HH, Enríquez QJF (2017) Composición química y rendimiento de biomasa de maralfalfa para producción de bioetanol de segunda generación. Revista Mexicana de Ciencias Agrícolas 8: 215-221. https://doi.org/10.29312/remexca.v8i1.85
Ventura RJ, Reyes VI, García SA, Muñoz GC, Muro RA, Maldonado PM, Rojas GAR, Cruz HA (2019) Rendimiento, perfil nutrimental y de fermentación ruminal in vitro de pasto maralfalfa (Cenchrus purpureus Schumach.) Morrone a diferentes frecuencias de corte en clima cálido. Acta Universitaria 29: 1-11. https://doi.org/10.15174/au.2019.2204
Ventura-Ríos J, Santiago-Ortega MA, Maldonado-Peralta MÁ, Álvarez-Vázquez P, Maldonado-Peralta R, Barrera-Martínez I, Wilson-García CY (2021) Biomasa de Urochloa humidicola como materia prima para producir biocombustible. Revista Fitotecnia Mexicana 44: 797-804. https://doi.org/10.35196/rfm.2021.4-A.797
Ventura RJ, Rojas GAR, Barrera MI, García SA, Maldonado PM (2023) Cutting frequency in cayman grass (Urochloa hybrid) on the calorific power of the mexican wet tropic. Agrociencia 57(3): 1-14. https://doi.org/10.47163/agrociencia.v57i3.2581.
Wongwatanapaiboon J, Kangvansaichol K, Burapatana V, Inochanon R, Winayanuwattikun P, Yongvanich T, Chulalaksananukul W (2012) The potential of cellulosic ethanol production from grasses in Thailand. Journal of Biomedicine and Biotechnology 303748: 1-10. https://doi.org/10.1155/2012/303748
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ecosistemas y Recursos Agropecuarios
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).