Predicción de metano de dos frutos arbóreos por cromatografía de gases y gas In vitro

Autores/as

  • Roselia Ramírez-Díaz Universidad Autónoma Chiapas. Facultad de Cien- cias Agronómicas.
  • René Pinto-Ruiz Universidad Autónoma Chiapas. Facultad de Cien- cias Agronómicas.
  • Luis Alberto Miranda-Romero Universidad Autónoma Chapingo. Posgrado en Producción Animal.
  • Manuel Alejandro La O-Arias https://orcid.org/0000-0002-6491-2063
  • David Hernández-Sánchez Colegio de Postgraduados. Programa de Ganadería, Carretera México-Texcoco
  • Deb Raj-Aryal Universidad Autónoma Chiapas. Facultad de Cien- cias Agronómicas.

DOI:

https://doi.org/10.19136/era.a10n3.3602

Palabras clave:

correlación; regresión; composición química; fermentación; taninos.

Resumen

El objetivo fue evaluar modelos predictivos de la producción metano de los frutos Leucaena collinsii y Guazuma ulmifolia medido a través de la técnica de producción de gas in vitro (TPG) y cromatografía de gases. A los frutos se realizó un análisis químico, parámetros de fermentación in vitro, y se estimó metano por cromatografía de gases y por la TPG. Se realizó un análisis de varianza considerando los efectos fijos de la técnica de medición y el tipo de fruto. Se hizo un análisis de correlación y regresión para conocer las ecuaciones y los coeficientes de determinación entre CH4 por cromatografía de gases y estimación de CH4 a partir de la TPG. Se encontró una tendencia positiva entre la estimación de metano por cromatografía de gases y por la TPG, por lo que, la TPG es promisoria para la determinación de metano de frutos de Leucaena collinsii y Guazuma ulmifolia.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Alatorre-Hernández A, Guerrero-Rodríguez JD, Olvera-Hernández JI, Aceves-Ruíz E, Vaquera-Huerta H, Vargas- López S (2018) Productividad, características fisicoquímicas y digestibilidad in vitro de leguminosas forra- jeras en trópico seco de México. Revista Mexicana de Ciencias Pecuarias 9: 296-315.

AOAC (2000) Methods Committee guidelines for validation of qualitative and quantitative food microbiological Official Methods of Analysis. Association of Official Analytical Chemist. The 17th edition. Washington, USA.

Aragadvay-Yungán RG, Barros-Rodríguez M, Ortiz L, Carro MD, Navarro Marcos C, Elghandour, MMMY, Salem AZM (2022) Mitigation of ruminal methane production with enhancing the fermentation by supplementation of different tropical forage legumes. Environmental Science and Pollution Research 29: 3438-3445.

Augustine C, Khobe D, Madugu AJ, Obidah LU, Solomsi, AA, Tarimbuka LI (2018) Chemical Composition of Gmelina (Gmelina arborea) Fruits and Leaves and Their Adoption as Livestock Feed Resources in Mubi Area. International Journal of Current Advanced Research 1: 5-11.

Bartha R, Pramer D (1965) Features of flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Science 100: 68-70.

Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E (2022) Invited review: Current enteric methane mitigation options. Journal of Dairy Science 105: 9297-9326.

Bekele W, Guinguina A, Zegeye A, Simachew A, Ramin M (2022) Contemporary methods of measuring and estimating methane emission from ruminants. Methane 1: 82-95.

Caicedo YC, Garrido-Galindo AP, Fuentes IM, Vásquez EV (2023) Association of the chemical composition and nutritional value of forage resources in Colombia with methane emissions by enteric fermentation. Tropical Animal Health and Production 55(2): 84. DOI: 10.1007/s11250-023-03458-x.

Cardoso-Gutiérrez E, Aranda-Aguirre E, Robles-Jiménez LE, Castelán-Ortega OA, Chay-Canul AJ, Foggi G, Angeles-Hernandez JC, Vargas-Bello-Pérez E, González-Ronquillo M (2021) Effect of tannins from tropical plants on methane production from ruminants: A systematic review. Veterinary and Animal Science 14: 100214. DOI: 10.1016/j.vas.2021.100214.

Fievez V, Babayemi OJ, Demeyer D (2005) Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology 123-124: 197-210.

Gemeda BS, Hassen A (2015) Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian-Australasian Journal of Animal Sciences 28: 188-199.

Huyen NT, Fryganas C, Uittenbogaard G, Mueller-Harvey I, Verstegen MWA, Hendriks WH (2016) Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. The Journal of Agricultural Science 154: 1474-1487.

Jiménez-Santiago A, Jiménez-Ferrer G, Alayón-Gamboa A, Pérez-Luna EJ, Piñeiro-Vázquez AT, Albores-Moreno S, Pérez-Escobar MG, Castro-Chan R (2019) Fermentación ruminal y producción de metano usando la téc- nica de gas in vitro en forrajes de un sistema silvopastoril de ovinos de Chiapas, México. Revista Mexicana de Ciencias Pecuarias 10: 298 -314.

Makkar HPS (2003) Quantification of tannins in tree and shrubs foliage. A Laboratoy Manual. Klumer Academic Publisher. Netherlands. 102p.

Martínez-Hernández BE, Salvador-Flores O, Miranda-Romero LA (2019) Indicador de calentamiento global a partir de la fermentación ruminal de alimentos con diferentes niveles de energía y proteína. Pastos y forrajes 42: 285-289.

Menke K, Steingass H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28: 7-55.

Miranda-Romero LA, Vazquez-Mendoza P, Burgueño-Ferreira JA, Aranda-Osorio G (2018) Nutritive value of cactus pear silages for finishing lambs. Journal of the Professional Association for Cactus Development 20: 196-215.

Naumann HD, Sepela R, Rezaire A, Masih SE, Zeller WE, Reinhardt L (2018) Relationships between structures of condensed tannins from texas legumes and methane production during in vitro rumen digestion. Molecules 23: 2123-2139.

Paengkoum P, Phonmun T, Liang JB, Huang XD, Tan HY, Jahromi MF (2015) Molecular weight, protein binding affinity and methane mitigation of condensed tannins from mangosteen-peel (Garcinia mangostana L). Asian-Australasian Journal of Animal Sciences 28: 1442-1448.

Pereyra C, Pinto R. Ramírez, Hernández D. Guevara F, Venegas J (2022) Estimación in vitro de metano y dióxido de carbono en dietas para engorda de bovinos. Archivos de zootecnia 71: 216-222.

Pérez AA, Pinto R, Ley A, Ramírez R, Molina L, Guevara F, Venegas J (2018) Estimación de la producción de metano (CH4) y dióxido de carbono (CO2) de la cerdaza. Avances en Investigación Agropecuaria 22: 35-45.

Pinto-Trinidad LR, Ramírez-Díaz R, Sandoval-González LM (2019) Efecto del uso de semillas arbóreas forrajeras sobre la actividad fermentativa de los microorganismos ruminales. Biotecnología en el Sector Agropecuario y Agroindustrial 17: 46-5.

Ribessi RL, Vanlierde A, Rodrigues JJ, Baeten V (2020) Infrared Spectroscopy and Multivariate Method to Quan- tify Methane in Gas Sample Emitted by Cows. Vibrational Spectroscopy, https://doi.org/10.1016/j.vibspec. 2020.103059. Fecha de consulta: 22 de septiembre de 2022.

Rojas-Hernández S, Olivares-Pérez J, Avilés-Nova F, Villa-Mancera A, Reynoso-Palomar A, Camacho-Díaz LM (2015) Productive response of lambs fed Crescentia alata and Guazuma ulmifolia fruits in a tropical region of Mexico. Tropical Animal Health and Production 47: 1431-1436.

SAS (2003) SAS/STAT Sofware. Versión 9. Statistical Analysis Software. Cary, NC SAS, USA: Institute INC.

Schofield P, Pell AN (1995) Measurement and kinetic analysis ofthe neutral detergent-soluble carbohydrate frac- tion of legumes and grasses. Journal of Animal Science 73: 3455-3463.

Udén P, Robinson P, Mateos G, Blank R (2012) Use of replicates in statistical analyses in papers sub-mitted for publication in Animal Feed Science and Technology. Animal Feed Science and Technology 171(1): 1-5. DOI: 10.1016/j.anifeedsci.2011.10.008.

Van-Soest P, Robertson J, Lewis B (1991) Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583-3597.

Zhong RZ, Fang Y, Sun HX, Wang M, Zhou DW (2016) Rumen methane output and fermentation characteristics of gramineous forage and leguminous forage at differing harvest dates determined using an in vitro gas production technique. Journal of Integrative Agriculture 15: 414-423.

Descargas

Publicado

2023-12-05

Número

Sección

NOTAS CIENTÍFICAS

Cómo citar

Ramírez-Díaz, R., Pinto-Ruiz, R., Miranda-Romero, L. A., La O-Arias, M. A., Hernández-Sánchez, D., & Raj-Aryal, D. (2023). Predicción de metano de dos frutos arbóreos por cromatografía de gases y gas In vitro. Ecosistemas Y Recursos Agropecuarios, 10(3). https://doi.org/10.19136/era.a10n3.3602

Artículos similares

31-40 de 135

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a