Aspersión foliar de nanoestructuras con zinc en plántulas de pepino (Cucumis sativus)

Autores/as

DOI:

https://doi.org/10.19136/era.a11nIV.4095

Palabras clave:

Semillas, soluciones, nanofertilizantes, crecimiento, biomasa

Resumen

Se estudió el efecto de la aspersión foliar de nanoestructuras con zinc (ZnO-NE) en el crecimiento de plántulas de pepino en invernadero. Los tratamientos fueron cuatro soluciones elaboradas mediante nanoestructuras con zinc (ZnO-NE) obtenidas por microondas profesional (MP) y doméstico (MD), y por precipitación directa (PD); el testigo positivo (TP) fue fertilizante comercial (ZnSO4) y negativo (TN) agua. Semillas de pepino se sumergieron 2 h en la solución con la fuente respectiva de Zn2+ (30 mg L-1) y se sembraron en contenedores de poliestireno con turba y perlita (1:1 v/v), en invernadero. Las plántulas con dos hojas verdaderas se asperjaron con las soluciones correspondientes, cada siete días durante tres semanas. Se presentó menor altura de plántula en TN y mayor diámetro de tallo con ZnO-NE de MD. Las ZnO-NE de MD y PD produjeron hojas más anchas (6.98 y 6.89 mm), PD hojas de mayor longitud (6.01 mm); las plántulas tratadas con ZnO-NE de MP y MD aumentaron el área foliar (360.86 y 313.82 cm-2). Las tres fuentes de ZnO-NE incrementaron la longitud de raíz, y el volumen de raíz destacó en TP (10.2 mL). La biomasa fresca en raíz fue mayor con ZnO-NE de MD (3.54 g). Todas las fuentes de Zn mejoraron el peso fresco y seco del tallo; el peso fresco (6.5 g) y seco (0.85 g) de hoja resaltó con ZnO-NE de PD. La aspersión foliar con ZnO-NE es una alternativa para mejorar el crecimiento y producción de biomasa en plántulas de pepino cultivadas en invernadero.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Arelis Quirino-García, Universidad Autónoma de Guerrero

    Maestría en Ciencias Agropecuarias y Gestión Local, Universidad Autónoma de Guerrero. Carretera Iguala-Tuxpan km 2.5, CP. 40101. Iguala de la Independencia, Guerrero, México.

  • Claudia Martínez-Alonso, Universidad Autónoma de Guerrero

    Maestría en Ciencias Agropecuarias y Gestión Local, Universidad Autónoma de Guerrero. Carretera Iguala-Tuxpan km 2.5, CP. 40101. Iguala de la Independencia, Guerrero, México.

  • Juan Elías Sabino-López, Universidad Autónoma de Guerrero

    Maestría en Ciencias Agropecuarias y Gestión Local, Universidad Autónoma de Guerrero. Carretera Iguala-Tuxpan km 2.5, CP. 40101. Iguala de la Independencia, Guerrero, México.

  • Mariana Espinosa-Rodríguez, Universidad Autónoma de Guerrero

    Maestría en Ciencias Agropecuarias y Gestión Local, Universidad Autónoma de Guerrero. Carretera Iguala-Tuxpan km 2.5, CP. 40101. Iguala de la Independencia, Guerrero, México.

  • Mirna Vázquez-Villamar, Universidad Autónoma de Guerrero

    Maestría en Ciencias Agropecuarias y Gestión Local, Universidad Autónoma de Guerrero. Carretera Iguala-Tuxpan km 2.5, CP. 40101. Iguala de la Independencia, Guerrero, México.

  • María de los Ángeles Maldonado-Peralta, Universidad Autónoma de Guerrero

    Maestría en Ciencias Agropecuarias y Gestión Local, Universidad Autónoma de Guerrero. Carretera Iguala-Tuxpan km 2.5, CP. 40101. Iguala de la Independencia, Guerrero, México.

Referencias

Ahmed F, Gill SS, Rao TN, Arshi N, Kumar S, Prasanthi Y (2023) Nanofertilizers: As smart nanoformulations in the agriculture industry. In: Chauhan NS, Gil SS (eds) The impact of nanoparticles on agriculture and soil. Academic Press, Elsevier. London, United Kingdom. pp: 285-299. https://doi.org/10.1016/B978-0-323-91703-2.00018 X.

Alkhatib R, Alkhatib B, Abdo N (2021) Effect of Fe3O4 nanoparticles on seed germination in tobacco. Environmental Science and Pollution Research 28: 53568-53577. https://doi.org/10.1007/s11356-021-14541-x.

Alvarez RCF, Prado RM, Souza-Júnior JP, Oliveira RLL, Felisberto G, Deus ACF, Cruz FJR (2019) Effects of foliar spraying with new zinc sources on rice seed enrichment, nutrition, and productivity. Acta Agriculturae Scandinavica, Section B Soil & Plant Science 69: 511-15. https://doi.org/10.1080/09064710.2019.1612939

Awasthi A, Bansal S, Jangir LK, Awasthi G, Awasthi KK, Awasthi K (2017) Effect of ZnO nanoparticles on germination of Triticum aestivum seeds. Macromolecular Symposia 376: 1700043. https://doi.org/10.1002/masy.201700043.

Bandeppa RG, Latha PC, Manasa V, Chavan S (2019) Soil ecological pros and cons of nanomaterials: Impact on microorganisms and soil health. In: Panpatte D, Jhala Y (ed) Nanotechnology for Agriculture. Spinger Nature. Singapur. pp: 145-159. https://doi.org/10.1007/978-981-32-9370-0_10.

Bastani S, Hajiboland R, Khatamian M, Saket-Oskoui M (2018) Nano iron (Fe) complex is an effective source of Fe for tobacco plants grown under low Fe supply. Journal of Soil Science and Plant Nutrition 18: 524-541. https://dx.doi.org/10.4067/s0718-95162018005001602.

Chun S, Manikandan M, Judy G (2020) Nanotoxic impacts on staple food crops: There’s plenty of room for the unpredictable. Critical Reviews in Food Science and Nutrition 60: 3725-36. https://doi.org/10.1080/10408398.2019.1707158

Eisvand HR, Kamaei H, Nazarian F (2018) Chlorophyll fluorescence, yield and yield components of bread wheat affected by phosphate bio-fertilizer, zinc and boron under late-season heat stress. Photosynthetica 56: 1287-96. https://doi.org/10.1007/s11099-018-0829-1.

El-Badri AM, Batool M, Wang C, Hashem AM, Tabl KM, Nishawy E, Wang B (2021) Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicology and Environmental Safety 225: 112695. https://doi.org/10.1016/j.ecoenv.2021.112695.

Gao X, Kundu A, Bueno V, Rahim AA, Ghoshal S (2021) Uptake and translocation of mesoporous SiO2-Coated ZnO nanoparticles to Solanum lycopersicum following foliar application. Environmental Science & Technology 55: 13551-60. https://doi.org/10.1021/acs.est.1c00447.

Galindo-Guzmán AP, Fortis-Hernández M, De La Rosa-Reta CV, Zermeño-González H, Galindo-Guzmán L (2022) Síntesis química de nanopartículas de óxido de zinc y su evaluación en plántulas de Lactuca sativa. Revista Mexicana de Ciencias Agrícolas 13: 299-308. https://doi.org/10.29312/remexca.v13i28.3284.

ImageJ (2022) Image Processing and Analisys in Java. Laboratory for Optical and Computational Instrumentation, University of Wisconsin.

Karakeçili A, Korpayev S, Dumanoğlu H, Alizadeh S (2019) Synthesis of indole-3-acetic acid and indole-3-butyric acid loaded zinc oxide nanoparticles: Effects on rhizogenesis. Journal of Biotechnology 303: 8-15. https://doi.org/10.1016/j.jbiotec.2019.07.004.

Khattab S, Alkuwayti MA, Yap YK, Meligy AMA, Bani-Ismail M, El Sherif F (2023) Foliar spraying of ZnO nanoparticals on Curcuma longa had increased growth, yield, expression of curcuminoid synthesis genes, and curcuminoid accumulation. Horticulturae 9: 355. https://doi.org/10.3390/horticulturae9030355.

Kolenčík M, Ernst D, Urík M, Šebesta M, Dobročka E, Illa R, Kanike R, Quian Y, Feng H, Orlová D, Kratošová G (2019) Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials 9: 1559. https://doi.org/10.3390/nano9111559.

Kolenčík M, Ernst D, Urík M, Ďurišová Ľ, Bujdoš M, Šebesta M, Dobročka E, Kšiňan S, Illa R, Quian Y, Feng H, Černý I, Holišová V, Kratošová G (2020) Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials 10: 1619. https://doi.org/10.3390/nano10081619.

Li Y, Liang L, Li W, Ashraf U, Ma L, Tang X, Pan S, Tian H, Mo Z (2021) ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Journal of Nanobiotechnology 19: 1-19. https://doi.org/10.1186/s12951-021-00820-9.

Lian J, Wu J, Xiong H, Zeb A, Yang T, Su X, Su L, Liu W (2020) Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum Aestivum L.). Journal of Hazardous Materials 385: 121620. https://doi.org/10.1016/j.jhazmat.2019.121620.

Magdaleno-García G, Juárez-Maldonado A, Betancourt-Galindo R, González-Morales S, Sánchez-Vega M, Cabrera-De la Fuente M, Méndez-López A (2023) Aplicación de nanopartículas de óxido de zinc y cloruro de sodio en chile pimiento. Ecosistemas y Recursos Agropecuarios 10: 1-17. https://doi.org/10.19136/era.a10nNEIII.3679.

Martínez-Alonso C, Quirino-García A, Salazar R, Maldonado-Astudillo YI (2022) Síntesis de óxido de zinc nanoestrucurado y su efecto en la germinación de semillas de maíz (Zea mays). Acta Agrícola y Pecuaria 8: 1-11. https://doi.org/10.30973/aap/2022.8.0081018.

Mehmood A (2018) Brief overview of the application of silver nanoparticles to improve growth of crop plants. IET Nanobiotechnology 12: 701-705. https://doi.org/10.1049/iet-nbt.2017.0273

Méndez-Argüello B, Vera-Reyes I, Mendoza-Mendoza E, García-Cerda LA, Puente-Urbina BA, Lira-Saldívar RH (2016) Promoción del crecimiento en plantas de Capsicum annuum por nanopartículas de óxido de zinc. Nova Scientia 8: 140-156.

Miranda-Villagómez E, Trejo-Téllez LI, Gómez-Merino FC, Sandoval-Villa M, Sánchez-García P, Aguilar-Méndez MÁ (2019) Nanophosphorus fertilizer stimulates growth and photosynthetic activity and improves P status in rice. Journal of Nanomaterials 2019: 1–11. https://doi.org/10.1155/2019/5368027.

Mosa WFA, El-Shehawi AM, Mackled MI, Salem MZM, Ghareeb RY, Hafez EE, Behiry SI, Abdelsalam NR (2021) Productivity performance of peach trees, insecticidal and antibacterial bioactivities of leaf extracts as affected by nanofertilizers foliar application. Scientific Reports 11:10205. https://doi.org/10.1038/s41598-021-89885-y.

Nekoukhou M, Fallah S, Abbasi-Surki A, Pokhrel LR, Rostamnejadi A (2022) Improved efficacy of foliar application of zinc oxide nanoparticles on zinc biofortification, primary productivity and secondary metabolite production in dragonhead. Journal of Cleaner Production 379:134803. https://doi.org/:10.1016/j.jclepro.2022.134803.

Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology 5: 333-40. https://doi.org/10.1038/nchembio.166.

Prasad R, Bagde US, Varma A (2012) An overview of intellectual property rights in relation to agricultural biotechnology. African Journal of Biotechnology 11: 13476-13752. https://doi.org/10.5897/AJB12.262.

Quirino-García A, Martínez-Alonso C, Sabino LJE, Vázquez VM, Espinosa RM, Maldonado PMA (2024) Synthesis of nano-zinc oxide by conventional chemical precipitation vs microwaves and its effect on the germination of cucumber (Cucumis sativus) sedes. Results in Chemistry 10: 1-9. https://doi.org/10.1016/j.rechem.2024.101720.

Ramírez D, Alvarado A, Ávila C, Camacho ME, Fernández J, Murillo R, Salazar L, Sandi CL (2018) Dinámica de la concentración y acumulación de nutrimentos en los componentes de la biomasa aérea de Cedrela odorata L. en Costa Rica. Agronomía Costarricense 42: 21-48. https://doi.org/10.15517/rac.v42i1.32196.

Rivera-Guetierrez RG, Preciado-Rangel P, Fortiz-Hernández M, Betancourt-Galindo R, Yescas-Coronado P, Orozco-Vidal JA (2021) Nanopartículas de óxido de zinc y su efecto en el rendimiento y calidad de melón. Revista Mexicana de Ciencias Agrícolas 12: 791-803. https://doi.org/10.29312/remexca.v12i5.2987.

Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry 135: 160-66. https://doi.org/10.1016/j.plaphy.2018.12.005.

Sanzari I, Leone A, Ambrosone A (2019) Nanotechnology in plant science: To make a long story short. Frontiers in Bioengineering and Biotechnology 7: 120. https://doi.org/10.3389/fbioe.2019.00120.

SAS (2002) SAS/STAT. User’s Guide, versión 9.0. Statistical Analysis System Institute. Cary, N. C. USA. 4424p.

Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences, nanoparticles and their impact on plants. pp: 19-35. https://doi.org/10.1007/978-3-319-14502-0_2.

Singh S, Husen A (2020) Behavior of agricultural crops in relation to nanomaterials under adverse environmental conditions. In: Husen A, Jawwaid M (eds) Nanomaterials for Agriculture and Forestry Applications. Elsevier 2020: 219-256. https://doi.org/10.1016/b978-0-12-817852-2.00009-3.

Soto P, Gaete H, Hidalgo ME (2011) Assessment of catalase activity, lipid peroxidation, chlorophyll a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Latin American Journal of Aquatic Research 39: 280-285. https://doi.org/10.3856/vol39-issue2-fulltext-9.

Steiner AA (1984) The universal nutrient solution. In: Proceedings of the 6th International Congress on Soilless Culture. ISOSC. Wageningen, The Netherlands. pp: 633-649.

Trejo-Téllez LI, Rodríguez-Mendoza MN, Gómez-Merino F, Alcántar-González G (2016) Fertilización foliar. In: Alcántar-González G, Trejo-Téllez LI, Gómez-Merino F (eds) Nutrición de cultivos. Biblioteca Básica de Agricultura. Colegio de Postgraduados. Texcoco, Estado de México. pp: 283-311.

Tymoszuk A, Wojnarowicz J (2020) Zinc oxide and zinc oxide nanoparticles impact on In vitro germination and seedling growth in Allium Cepa L. Materials 13: 2784. https://doi.org/10.3390/ma13122784.

Umair HM, Aamer M, Umer-Chattha M, Haiying T, Shahzad B, Barbanti L (2020) The critical role of zinc in plants facing the drought stress. Agriculture 10: 396. https://doi.org/10.3390/agriculture10090396.

Vargas-Martínez G, Betancourt-Galindo R, Juárez-Maldonado A, Sánchez-Vega M, Sandoval-Rangel A, Méndez-López A (2023) Impacto de NPsZnO y microorganismos rizosféricos en el crecimiento y biomasa del tomate. Tropical and Subtropical Agroecosystems 26: 1-12. https://doi.org/10.56369/tsaes.4332.

Vera-Reyes I, Vázquez-Núñez E, Lira-Saldivar RH, Méndez-Argüello B (2018) Effects of nanoparticles on germination, growth, and plant crop development. In: López-Valdez F, Fernández-Luqueño F (eds) Agricultural nanobiotechnology. Springer Nature, Switzerland. pp: 77-110. https://doi.org/10.1007/978-3-319-96719-6_5.

Wang P, Lombi E, Zhao FG, Kopittke MP (2016) Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science 21: 699-712. https://doi.org/10.1016/j.tplants.2016.04.005.

Wei J, Zou Y, Li P, Yuan X (2020) Titanium dioxide nanoparticles promote root growth by interfering with auxin pathways in Arabidopsis thaliana. Phyton-International Journal of Experimental Botany 89: 883-891. https://doi.org/10.32604/phyton.2020.010973.

Zhang X, Li W, Wu D, Deng Y, Shao J, Chen L, Fang D (2018) Size and shape dependent melting temperature of metallic manomaterials. Journal of Physics: Condensed Matter 31: 075701. https://doi.org/10.1088/1361-648x/aaf54b.

Descargas

Publicado

2024-12-16

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Quirino-García, A., Martínez-Alonso, C., Sabino-López, J. E., Espinosa-Rodríguez, M., Vázquez-Villamar, M., & Maldonado-Peralta, M. de los Ángeles. (2024). Aspersión foliar de nanoestructuras con zinc en plántulas de pepino (Cucumis sativus). Ecosistemas Y Recursos Agropecuarios, 11(IV). https://doi.org/10.19136/era.a11nIV.4095

Artículos similares

11-20 de 356

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a

1 2 > >>