Application of extracts of seaweed, NP’SZnO and microorganisms on the plant biomass in tomato

Authors

  • Raúl Morales-Meléndez Universidad Autónoma Agraria Antonio Narro
  • Rebeca Betancourt-Galindo Centro de Investigación en Química Aplicada
  • Antonio Juárez-Maldonado Universidad Autónoma Agraria Antonio Narro
  • Armando Hernández-Pérez Universidad Autónoma Agraria Antonio Narro
  • José Antonio González-Fuentes Universidad Autónoma Agraria Antonio Narro
  • Bertha Puente-Urbina Centro de Investigación en Química Aplicada
  • Alonso Méndez-López Universidad Autónoma Agraria Antonio Narro

DOI:

https://doi.org/10.19136/era.a10n2.3206

Keywords:

vegetative growth, nanoparticles, microorganisms, Ascophyllum nodosum

Abstract

Agriculture faces serious challenges that demand the production of a greater amount of food for present and future generations, coupled with this, biotic and abiotic factors increasingly affect crop yields, given this problem, biostimulants are an alternative. The aim of this study was to determine the effect of foliar application of seaweed extract (EA = 0, 500, 2 500 ppm) and zinc oxide nanoparticles (NP’SZnO = 0, 50 and 250 mg L−1) and coinoculation of the
substrate with rhizospheric microorganisms (without microorganisms [SMos] and with microorganisms soaked in the substrate [CMos = 10 spores mL−1 of Glomus intraradices and 1x106 CFU of Azospirillum brasilense]) on the accumulation of biomass in tomato plants. The experiment was established under a randomized block design with a factorial arrangement (3x3x2), with eight repetitions. The analysis of variance identified significant differences between the treatments, the factors analyzed and the respective interactions. EA sprays improved stem dry weight (PST), stem biomass (BT) and root biomass (BR); while, spraying with NP’SZnO increased root fresh weight (PFR), leaf dry weight (PSH), root dry weight (PSR), leaf biomass (BH) and BR; whereas, the co-inoculation of the soil with microorganisms (CMos) improved the fresh leaf weight (PFH), PSR and BR. The application of biostimulants showed a stimulating effect on the vegetative growth of tomato plants. 

Downloads

Download data is not yet available.

References

Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium Dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation and Development 29: 1065-1073.

Abkhoo J, Sabbagh SK (2016) Control of Phytophthora melonis damping-off, induction of defense responses, and gene expression of cucumber treated with commercial extract from Ascophyllum nodosum. Journal of Applied Phycology 28: 1333-1342.

Ahmed SM (2021) Influence of bio-fertilizers and addition methods on growth, yield, and quality of sweet pepper under green house. Diyala Agricultural Sciences Journal 13: 10-23.

Ali O, Ramsubhag A, Jayaraman J (2021) Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 10: 531. DOI: 10.3390/plants10030531.

Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63: 3523-3543.

Bala R, Kalia A, Dhaliwal SS (2019) Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. Journal of Soil Science and Plant Nutrition 19: 379-389.

Banakar SN, PrasannaKumar MK, Mahesh HB, Parivallal PB, Puneeth ME, Gautam C, Narayan, SS (2022) Red-seaweed biostimulants differentially alleviate the impact of fungicidal stress in rice (Oryza sativa L.). Scientific Reports 12: 5993. DOI: 10.1038/s41598-022-10010-8.

De Mendonça Júnior AF, Dos Santos Rodrigues APM, Júnior RS, Negreiros AMP, Bettini MO, Freitas CDM, Gomes TRR (2019) Seaweed extract Ascophyllum nodosum (L.) on the growth of watermelon plants. Jour- nal of Experimental Agriculture International 31: 4. DOI: 10.9734/JEAI/2019/v31i430080.

Delgado-Ramírez CS, Hernández-Martínez R, Sepúlveda E (2021) Rhizobacteria associated with a native solana- ceae promote plant growth and decrease the effects of Fusarium oxysporum in tomato. Agronomy 11: 579. DOI: 10.3390/agronomy11030579.

Di-Barbaro G, Andrada H, Del Valle E, Brandan de Weht C (2021) Evaluation of the effect of Azospirillum brasilense and Mycorrhizal fungi of the soil in Yacón grown in a greenhouse. Open Journal of Agricultural Research 1: 8-15.

Du-Jardin P (2015) Plants biostimulants: Definition, concept, main categories, and regulation. Scientia Horticul- turae 196: 3-14.

Elemike EE, Uzoh IM, Onwudiwe D, Babalola OO (2019) The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences 9: 499. DOI: 10.3390/app9030499.

Faizan M, Hayat S (2019) Effect of foliar spray of ZnO-NPs on the physiological parameters and antioxidant systems of Lycopersicon esculentum. Polish Journal of Natural Sciences 34: 87-105.

Fan D, Hodges DM, Critchley AT (2013) Communications in soil science and plant analysis a commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Communications in Soil Science and Plant Analysis 44: 1873-1884.

Goñi O, Quille P, O’connell S (2018) Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiology and Biochemistry 126: 63-73.

González-González MF, Ocampo-Álvarez H, Santacruz-Ruvalcaba F, Sánchez-Hernández CV, Casarrubias-Cas- tillo K, Becerril-Espinosa, Hernández-Herrera RM (2020) Physiological, ecological, and biochemical impli- cations in tomato plants of two plant biostimulants: Arbuscular mycorrhizal fungi and seaweed extract. Frontiers in Plant Science 11: 999. DOI: 10.3389/fpls.2020.00999.

Han X, Xi Y, Zhang Z, Mohammadi MA, Joshi J, Borza T, Wang-Pruski G (2021) Effects of phosphite as a plant biostimulant on metabolism and stress response for better plant performance in Solanum tuberosum. Ecotoxicology and Environmental Safety 210: 111873. DOI: 10.1016/j.ecoenv.2020.111873.

Hernández JLG, Alvarado MCR, Rangel PP, Nieto-Garibay A, Murillo-Amador B, Ruiz-Espinoza FH, Puente EOR (2018) Growth and oil yield parameters of the Capsicum annuum var aviculare associated to the beneficial bacterium Bacillus amyloliquefaciens and Azospirillum halopraeferens under field conditions. Biotecnia 20: 59-64.

Hossain MM, Sultana F, Islam S (2017) Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer. Singapore. pp: 135-191.

Hsieh CH (2007) Spherical zinc oxide nano particles from zinc acetate in the precipitation method. Journal of the Chinese Chemical Society 54: 31-34.

Hussain A, Ali S, Rizwan M, ur Rehman MZ, Javed MR, Imran M, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution 242: 1518-1526.

Itroutwar PD, Kasivelu G, Raguraman V, Malaichamy K, Sevathapandian SK (2020) Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatalysis and Agricultural Biotechnology 29: 101778. DOI: 10.1016/j.bcab.2020.101778.

Joshi-Paneri J, Chamberland G, Donnelly D (2020) Effects of Chelidonium majus and Ascophyllum nodosum extracts on growth and photosynthesis of soybean. Acta Agrobotanica 73: 1. DOI: 10.5586/aa.7313.

Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A (2021) Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants. Journal of Advanced Research 31: 113-126.

Kahromi S, Najafi F (2020) Growth and some physiological characteristics of alfalfa (Medicago sativa L.) in response to lead stress and Glomus intraradices symbiosis. Journal of Plant Process and Function 9: 37.

Kaur I (2020) Seaweeds: Soil Health Boosters for Sustainable Agriculture. In: Giri B, Varma A (eds) Soil Health. Soil Biology. Springer, Cham. UK. pp: 163-182.

Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514: 131-139.

Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology 2011. ID de artículo 696535. DOI: 10.1155/2011/696535.

Mahusook SS, Rajathi F, Maharifa H, Sharmila R (2021) Comparative study of agarophytes-gracilaria edulis and gelidiella acerosa as biostimulant and application of agar for water-holding in soil and plant growth promotion. Agricultural Science Digest-A Research Journal 41: 21-27.

Mashayekhi K, Dehkordi AG, Mousavizadeh, SJ, Rahnama K (2021) The effect of nitrogen and phosphorus supplier bacteria on the characteristics of tomato seedling. Iranian Journal of Horticultural Science 52: 113-123.

Méndez-Argüello B, Vera-Reyes I, Mendoza-Mendoza E, García-Cerda LA, Puente-Urbina BA, Lira-Saldívar RH (2016) Promoción del crecimiento en plantas de Capsicum annuum por nanopartículas de óxido de zinc. Nova Scientia 8: 140-156.

Ozbay N, Demirkiran AR (2019) Enhancement of growth in ornamental pepper (Capsicum annuum L.) plants with ®

application of a commercial seaweed product, stimplex . Applied Ecology and Environmental Research 17: 4361-4375.

Pérez-Velasco EA, Valdez-Aguilar LA, Betancourt-Galindo R, Martínez-Juárez J, Lozano-Morales SA, González- Fuentes JA (2021) Gas exchange parameters, fruit yield, quality, and nutrient status in tomato are stimulated by ZnO nanoparticles of modified surface and morphology and their application form. Journal of Soil Science and Plant Nutrition 21: 991-1003.

Pessarakli M, Szabolcs I (2019) Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli M (ed) Handbook of plant and crop stress. CRC Press. USA. pp: 1-16.

Rodríguez-Larramendi LA, Guevara Hernández FLO, Arias MA, Reyes-Muro L, Campos-Saldaña RA, Salas- Marina MÁ (2020) Leaf growth and biomass accumulation in radish (Raphanus sativus L.) inoculated with rhizosphere microorganisms. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo 52: 78-87.

Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry 135: 160-166.

Seppelt R, Klotz S, Peiter E, Volk M (2022) Agriculture and food security under a changing climate: An underes- timated challenge. Iscience 25(12): 105551. DOI: 10.1016/j.isci.2022.105551.

Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B (2019) Ascophyllum nodosum-based bios- timulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science 10: 655. DOI: 10.3389/fpls.2019.00655.

SIAP-SADER (2020) Panorama agroalimentario 2020. Secretaria de agricultura y desarrollo rural, edición 2020, Servicio de Información Agroalimentaria y Pesquera. Ciudad de México. pp: 84-85.

Singh D, Kumar A (2018) Investigating long-term effect of nanoparticles on growth of Raphanus sativus plants: a trans-generational study. Ecotoxicology 27: 23-31.

Steiner AA (1961) A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil 15: 134-154.

Todeschini V, Ait Lahmidi N, Mazzucco E, Marsano F, Gosetti F, Robotti E, Lingua G (2018) Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Frontiers in Plant Science 9: 1611. DOI: 10.3389/fpls.2018.01611.

Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiology and Biochemistry 110: 59-69.

Wally AT, Critchley D, Hiltz JS, Craigie X, Han LI, Zaharia SR, Prithiviraj B (2013) Erratum to: regulation of phytohormone biosynthesis and accumulation in arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation 32: 340-341.

Yagmur B, Gunes A (2021) Evaluation of the effects of plant growth promoting rhizobacteria (PGPR) on yield and quality parameters of tomato plants in organic agriculture by principal component analysis (PCA). Gesunde Pflanzen 73: 219-228.

Downloads

Published

2023-05-29

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Morales-Meléndez, R., Betancourt-Galindo , R., Juárez-Maldonado , A., Hernández-Pérez, A., González-Fuentes , J. A., Puente-Urbina, B., & Méndez-López, A. (2023). Application of extracts of seaweed, NP’SZnO and microorganisms on the plant biomass in tomato. Ecosistemas Y Recursos Agropecuarios, 10(2). https://doi.org/10.19136/era.a10n2.3206

Similar Articles

1-10 of 208

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)