Bocashi and NPK fertilization on the production of fig tree cv. Black Mission

Authors

DOI:

https://doi.org/10.19136/era.a12n2.4179

Keywords:

Ficus carica, soil solution, Black Mission, growth, organic fertilizer

Abstract

Bocashi is an organic fertilizer supplying nutrients to the soil and to the plants. On the other hand, the Fig-fruit tree crop requires low nutrients. The goal of this research was to determine the optimum rates of Bocashi and NPK fertilization to obtain the highest growth and yield of fig trees; as well as studying their effect on the ion concentration in the soil solution. Three rates of bocashi (0, 5 and 10 kg plant-1) and five concentrations of NPK (0, 25, 50, 75 and 100%) were assessed; 15 treatments in total. The experimental design was fully randomized with factorial arrangement of 3x5, with three replicates. We assessed: final height, stalk diameter, aerial dry biomass, estimated yield and the concentration of NO3-, K+ and Ca2+ in the soil solution. The results showed that then the largest stalk diameter was obtained with the addition of 5 kg of bocashi at 50% inorganic fertilization, while dry biomass increased after adding bokashi and inorganic fertilization at 25% and 50%. Furthermore, the use of Bocashi did not influence ion concentration when larger amounts of fertilizer were added. Furthermore, the highest yield was obtained with 10 kg of bocashi and 25% fertilization. It can be concluded that applying bocashi can reduce fertilization by 75% in the first year of planting in fig crops.

Downloads

Download data is not yet available.

Author Biographies

  • Belén Guadalupe Muñoz-Rocha, Universidad Autónoma Agraria Antonio Narro

    Maestría en Ciencias en Ingeniería en sistemas de Producción

  • Alejandro Zermeño-González , Universidad Autónoma Agraria Antonio Narro

    Departamento de Riego y Drenaje

  • Homero Ramírez-Rodríguez , Universidad Autónoma Agraria Antonio Narro

    Departamento de Horticultura

     

  • Rebeca Betancour-Galindo, Centro de Investigación de Química Aplicada

    Departamento de materiales avanzados

  • Armando Hernández-Pérez, Universidad Autónoma Agraria Antonio Narro

    Departamento de Horticultura

References

Abo-Sido N, Goss JW, Griffith AB, Klepac-Ceraj V (2021) Microbial transformation of traditional fermented fertilizer bokashi alters chemical composition and improves plant growth. bioRxiv. https://doi.org/10.1101/2021.08.01.454634

Agegnehu G, Nelson PN, Bird MI (2016) Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil and Tillage Research 160: 1-13. https://doi.org/10.1016/j.still.2016.02.003

Alburquerque JA, Salazar P, Barrón V, Torrent J, Del Campillo MDC, Gallardo A, Villar R (2013) Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development 33: 475-484.

Anil SK, Kaniganti S, Hima Kumari P, Sudhakar Reddy P, Suravajhala P, Kishor PK (2024) Functional and biotechnological cues of potassium homeostasis for stress tolerance and plant development. Biotechnology and Genetic Engineering Reviews 40(4): 3527–3570. https://doi.org/10.1080/02648725.2023.2282512

Cen Y, Guo L, Liu M, Gu X, Li C, Jiang G (2020) Using organic fertilizers to increase crop yield, economic growth, and soil quality in a temperate farmland. PeerJ 8: e9668. https://doi.org/10.7717/peerj.9668

Chen J, Lü S, Zhang Z, Zhao X, Li X, Ning P, Liu M (2018) Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Science of the Total Environment 613: 829-839. https://doi.org/10.1016/j.scitotenv.2017.09.186

Chen R, Chang H, Wang Z, Lin H (2023) Determining organic-inorganic fertilizer application threshold to maximize the yield and quality of drip-irrigated grapes in an extremely arid area of Xinjiang, China. Agricultural Water Management 276: 108070. https://doi.org/10.1016/j.agwat.2022.108070

Doan TT, Henry-Des-Tureaux T, RumpeL C, Janeau JL, Jouquet P (2015) Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Science of The Total Environment 514: 147-154. https://doi.org/10.1016/j.scitotenv.2015.02.005

Dominati E, Mackay A, Green S, Patterson M (2014) A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: a case study of pastoral agriculture in New Zealand. Ecological Economics 100: 119-129. https://doi.org/10.1016/j.ecolecon.2014.02.008

Duan W, Wang S, Zhang H, Xie B, Zhang L (2024). Plant growth and nitrate absorption and assimilation of two sweet potato cultivars with different N tolerances in response to nitrate supply. Scientific Reports 14(1): 21286. https://doi.org/10.1038/s41598-024-72422-y

Efendi B, Haryono H, Mariay IF, Andriyan LY, Sarungallo AS (2024) Effect of dosage of bokashi organic fertilizer on agronomic growth and productivity of rice plants (Oryza sativa). West Science Agro 2(04): 178-183. https://doi.org/10.58812/wsa.v2i04.1451

Fageria NK, Moreira A (2011) The role of mineral nutrition on root growth of crop plants. In: Sparks DL (eds) Advances in Agronomy. Vol.110. Academic Press. San Diego, CA, USA. pp. 231-251. https://doi.org/10.1016/B978-0-12-385531-2.00004-9

FAO (2022) Perspectivas agrícolas 2022–2031. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Roma, Italia. 337 p. https://read.oecd.org/10.1787/1b959370-es?format=pdf. Fecha de consulta: 7 de mayo de 2025.

Flaishman MA, Aksoy U (2022) Advances in fig research and sustainable production. CABI. Massachusetts, USA. 548p.

FOASTAT (2021) División de Estadística. Base de datos estadísticos corporativos de la Organización para la Agricultura y la Alimentación. https://www.fao.org/faostat/es/#home. Fecha de consulta: 19 de febrero del 2022.

García E (2004) Modificaciones al sistema de clasificación climática de Köppen: para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografía, UNAM. Ciudad de México, México. 198p.

Gashua AG, Sulaiman Z, Yusoff MM, Samad MYA, Ramlan MF, Salisu MA (2022) Assessment of fertilizer quality in horse waste-based bokashi fertilizer formulations. Agronomy 12(4): 937. https://doi.org/10.3390/agronomy12040937

Ginting S (2019) Promoting bokashi as an organic fertilizer in Indonesia: A mini review. International Journal of Environmental Sciences & Natural Resources 21(3): 1–5. https://doi.org/10.19080/IJESNR.2019.21.556070

INEGI (2000) Diccionario de datos climáticos (vectorial). Instituto Nacional de Estadística y Geografía. https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/historicos/2104/702825224028/702825224028_7.pdf. Fecha de consulta: 8 de diciembre del 2023.

Karimuna L, Rahiní NM, Boer D (2016) The use of bokashi to enhance agricultural productivity of marginal soils in Southeast Sulawesi, Indonesia. Journal of Tropical Crop Science 3(1): 1-6. https://doi.org/10.29244/jtcs.3.1.1-6.

Kopittke PM, Menzies NW, Wang P, Mckenna BA, Lombi E (2019) Soil and the intensification of agriculture for global food security. Environment International 132: 105078. https://doi.org/10.1016/j.envint.2019.105078

Lasmini SA, Nasir B, Hayati N, Edy N (2018) Improvement of soil quality using bokashi composting and NPK fertilizer to increase shallot yield on dry land. Australian Journal of Crop Science 12(11): 1743-1749. https://doi.org/10.21475/ajcs.18.12.11.p1435

Mahmoudi S, Khali M, Benkhaled A, Boucetta I, Dahmani Y, Attallah Z, Belbraouet S (2018) Fresh figs (Ficus carica L.): Pomological characteristics, nutritional value, and phytochemical properties. European Journal of Horticultural Science 83(2): 104-113. https://doi.org/10.17660/eJHS.2018/83.2.6

Marschner P (2012) Marschner's mineral nutrition of higher plants. 3rd edition. Academic Press. San Diego, CA, USA. 651p.

Martínez-Macias K J, Márquez-Guerrero SY, Martínez-Sifuentes AR, Segura-Castruita MÁ (2022) Habitat suitability of fig (Ficus carica L.) in Mexico under current and future climates. Agriculture 12(11): 1816. https://doi.org/10.3390/agriculture12111816

Medina-Saavedra T, Arroyo Figueroa G, Martínez Pérez I, Vargas Rodríguez L (2016) Fertilizante orgánico bocashi en germinación de semillas de mezquite (Prosopis glandulosa). Ciencia y Tecnología Agropecuaria 4(2): 20-30.

Mendoza-Castillo VM, Pineda-Pineda J, Vargas-Canales JM, Hernández-Arguello E (2019) Nutrition of fig (Ficus carica L.) under hydroponics and greenhouse conditions. Journal of Plant Nutrition 42(11-12): 350-1365. https://doi.org/10.1080/01904167.2019.1609510

Ramlan (2022) Effect of bokashi fertilizer on increasing soil nutrients and growth of medicinal plants. International Journal of Environmental Sciences & Natural Resources 17(3): 433-437. https://doi.org/10.18280/ijdne.170314

Ramos AD, Terry AE, Soto CF, Cabrera RJA (2014) Bocashi: abono orgánico elaborado a partir de residuos de la producción de plátanos en Bocas del Toro, Panamá. Cultivos Tropicales 35(2): 90-97.

Restrepo J (2010) A, B, C de la agricultura orgánica y panes de piedra: Abonos orgánicos fermentados. 1a ed. Feriva S.A. Colombia. 86p.

SADER (2022) ¿Qué hay detrás de la producción de higo? Gobierno de México. https://www.gob.mx/agricultura/articulos/que-hay-detras-de-la-produccion-de-higo. Fecha de consulta: 13 de enero del 2024.

Sánchez-López PL 2022 Comparativa de análisis climático para estrategias de diseño mediante simuladores y carta psicrométrica de Givoni. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI 10(2): 148-154. https://doi.org/10.29057/icbi.v10iEspecial2.8692

Shaji H, Chandran V, Mathew L (2021) Organic fertilizers as a route to controlled release of nutrients. In: Lewu FB, Volova T, Thomas SKRR (eds) Controlled release fertilizers for sustainable agriculture. Academic Press. San Diego, CA, USA. pp. 231-245. https://doi.org/10.1016/B978-0-12-819555-0.00013-3

Soberanes PA, Calderón ZG, López JA, Alvarado RHE (2020) Biorreguladores para la producción de higo bajo condiciones de invernadero. Revista Fitotecnia Mexicana 43(1): 61-69. https://doi.org/10.35196/rfm.2020.1.61

Souza LA, Tavares R (2021) Nitrogen and stem development: a puzzle still to be solved. Frontiers in Plant Science 12: 630587. https://doi.org/10.3389/fpls.2021.630587

Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development. 6th edition. Sinauer Associates. Massachusetts, USA. 888p.

Wang Y, Zhu Y, Zhang S, Wang Y (2018) What could promote farmers to replace chemical fertilizers with organic fertilizers. Journal of Cleaner Production 199: 882-890. https://doi.org/10.1016/j.jclepro.2018.07.222

Yang M, Zhou, Hang H, Chen S, Liu H, Su J, Lv H, Jia H, Zhao G (2024) Effects of balancing exchangeable cations Ca, Mg, and K on the growth of tomato seedlings (Solanum lycopersicum L.) based on increased soil cation exchange capacity. Agronomy 14(3): 629. https://doi.org/10.3390/agronomy14030629

Yasmeen S, Saba A, Sadia N (2020) Ficus Carica L.: A panacea of nutritional and medicinal benefits. Cellmed 10(1): 1-1. https://doi.org/10.5667/tang.2020.0001.

Yuliana A, Sumarni T, Islami T (2015) Application of baokashi and sunn hemp (Crotalaria juncea L.) to improve inorganic fertilizer efficiency on mize (Zea mays). Journal of Degraded and Mining Lands Management 3(1): 433-438. https://doi.org/10.15243/jdmlm.2015.031.433.

Zhang Y, Xia C, Zhang X, Cheng X, Feng G, Wang Y, Gao Q (2021) Estimating the maize biomass by crop height and narrowband vegetation indices derived from UAV-based hyperspectral images. Ecological Indicators 129: 107985. https://doi.org/10.1016/j.ecolind.2021.107985.

Downloads

Published

2025-06-16

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Muñoz-Rocha, B. G., Zermeño-González , A., Ramírez-Rodríguez , H., Betancour-Galindo, R., & Hernández-Pérez, A. (2025). Bocashi and NPK fertilization on the production of fig tree cv. Black Mission. Ecosistemas Y Recursos Agropecuarios, 12(2). https://doi.org/10.19136/era.a12n2.4179

Most read articles by the same author(s)

1 2 > >>